Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis?

1998 ◽  
Vol 201 (16) ◽  
pp. 2445-2453 ◽  
Author(s):  
J Wang ◽  
AE Douglas

When corals and allied animals are deprived of their symbiotic algae, the ammonium content in their tissues rises. This is commonly interpreted as evidence for nitrogen recycling (i.e. algal assimilation of animal waste ammonium into amino acids that are released back to the animal), but it can also be explained as nitrogen conservation by the animal (i.e. reduced net ammonium production in response to the receipt of algal photosynthetic carbon). This study discriminated between these interpretations in two ways. First, the increased ammonium concentration in the sea anemone Aiptasia pulchella, caused by darkness or depletion of the alga Symbiodinium, was partially or completely reversed by supplementing the medium with organic carbon compounds (e.g. <IMG src="/images/symbols/&agr ;.gif" WIDTH="9" HEIGHT="12" ALIGN= "BOTTOM" NATURALSIZEFLAG="3">-ketoglutarate). Second, the activity of the ammonium-assimilating enzyme glutamine synthetase and the concentration of protein amino acids in the free amino acid pool of the animal, which were depressed by darkness and algal depletion, were restored by exogenous carbon compounds. It is concluded that organic carbon, whether derived from algal photosynthate or exogenously, promotes the animal's capacity for ammonium assimilation and reduces ammonium production from amino acid degradation. These processes contribute to nitrogen conservation in the animal, but they confound the interpretation of various studies on nitrogen recycling by symbiotic algae.

1986 ◽  
Vol 227 (1247) ◽  
pp. 147-159 ◽  

The effects of added ammonium ion (10-1000 μM) on photosynthetic 14 CO 2 fixation by tissues slices from the mantle of tridacnid clams, by coral tips, and by isolated zooxanthellae from clam mantle were examined. Ammonium ions stimulated photosynthesis in tissue slices but not in freshly isolated zooxanthellae. When ammonium stimulated 14 CO 2 fixation by coral tips an increase in water-soluble labelled compounds, especially amino acids, was observed. Even though ammonium ions did not stimulate photosynthesis in isolated zooxanthellae from clam mantle, light stimulated ammonium uptake in these cells. Studies with 15 NH + 4 confirmed earlier observations (in zooxanthellae isolated from Hippopus ) of light-stimulated transfer of ammonium from the amido-N of glutamine to the amino-N of glutamate, glutamine and other amino acids. This observation, in isolated zooxanthellae and tissue slices, suggests that the glutamine synthase-glutamate synthetase pathway of ammonium incorporation is light-driven in these systems. The possible significance of these processes during ammonium recycling by symbiotic algae in marine animals is discussed.


2015 ◽  
Vol 12 (2) ◽  
pp. 1613-1651 ◽  
Author(s):  
T. Larsen ◽  
L. T. Bach ◽  
R. Salvatteci ◽  
Y. V. Wang ◽  
N. Andersen ◽  
...  

Abstract. Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles, and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing biosynthetic origin of amino acid carbon skeletons, based on natural occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions; and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results underscore that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e. isoleucine, lysine, leucine and tyrosine), bacterial derived amino acids ranged from 10–15% in the sediment layers from the last 5000 years to 35% during the last glacial period. The larger bacterial fractions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. Taken together, these culturing and sediment studies suggest that δ13CAA patterns in sediments represent a novel proxy for understanding both primary production sources, as well as direct bacterial role in the ultimate preservation of sedimentary organic matter.


1985 ◽  
Vol 5 (4) ◽  
pp. 215-218 ◽  
Author(s):  
Fritz Bangsgaard Pedersen ◽  
Claus Dragsholt ◽  
Erik Laier ◽  
Jens Jurgen ◽  
Frifelt Aage ◽  
...  

For three months we alternately used CAPD solutions based on amino acids or glucose in six patients. At the start, amino acid concentrations in plasma (P) were normal, except that for leucine which was low and citrulline was high. During the study, P-valine, -isoleucine, -leucine, and -serine increased while the concentration of methionine decreased. The increase in the plasma concentration of the three branched-chain amino acids might increase protein synthesis; leucine particularly assists protein synthesis in muscle. However the technical and analytical methods used in this investigation do not permit us to draw such conclusions. Serum concentrations of cholesterol, HDL, LDL, glucose and glycosylated hemoglobin remained unchanged, as did concentrations of albumin, transferrin, and phosphate. The nitrogen load from amino acids did not increase the plasma ammonium concentration, while serum urea increased slightly. Serum triglycerides continued to increase in spite of the amino acid supplementation. Thus the amino acid solution, which was well tolerated, seemed to induce some beneficial alterations in the plasma amino acid concentrations in the uremic patient. The consequence of these changes remains to be evaluated.


2015 ◽  
Vol 12 (16) ◽  
pp. 4979-4992 ◽  
Author(s):  
T. Larsen ◽  
L. T. Bach ◽  
R. Salvatteci ◽  
Y. V. Wang ◽  
N. Andersen ◽  
...  

Abstract. Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. It is uncertain whether archaea may have contributed to sedimentary δ13CAA patterns we observe, and controlled culturing studies will be needed to investigate whether δ13CAA patterns can differentiate bacterial from archeal sources. Further research efforts are also needed to understand how closely δ13CAA patterns derived from hydrolyzable amino acids represent total sedimentary proteineincous material, and more broadly sedimentary organic nitrogen. Overall, however, both our culturing and sediment studies suggest that δ13CAA patterns in sediments will represent a novel proxy for understanding both primary production sources, and the direct bacterial role in the ultimate preservation of sedimentary organic matter.


Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


Sign in / Sign up

Export Citation Format

Share Document