Cloning and molecular characterisation of the trout (Oncorhynchus mykiss) vacuolar H(+)-ATPase B subunit

2000 ◽  
Vol 203 (3) ◽  
pp. 459-470 ◽  
Author(s):  
S.F. Perry ◽  
M.L. Beyers ◽  
D.A. Johnson

The current model of transepithelial ion movements in the gill of freshwater fish incorporates an apically oriented vacuolar H(+)-ATPase (H(+)V-ATPase; proton pump) that is believed to facilitate both acid excretion and Na(+) uptake. To substantiate this model, we have cloned and sequenced a cDNA encoding the B subunit of the rainbow trout (Oncorhynchus mykiss) H(+)V-ATPase. The cloning of the B subunit enabled an examination by northern analysis of its tissue distribution and expression during external hypercapnia. Degenerate oligonucleotide primers to the B subunit of the H(+)V-ATPase were designed and used in a semi-nested polymerase chain reaction (PCR) to amplify an 810 base pair (bp) product from a trout gill/kidney cDNA library. This PCR product was cloned and sequenced and then used to screen the same cDNA library. The assembled 2262 bp cDNA included an open reading frame coding for a deduced protein of 502 amino acid residues. A BLAST search of the GenBank nucleotide database revealed numerous matches to other vertebrate and invertebrate H(+)V-ATPase B subunits. Protein alignment demonstrated that the trout H(+)V-ATPase B subunit is more than 85 % identical and more than 90 % similar to those in other vertebrate species. An initial analysis of H(+)V-ATPase mRNA tissue distribution revealed significant expression in blood. Although a comparison of perfused tissues (blood removed) with non-perfused tissues demonstrated no obvious contribution of the blood to total tissue H(+)-ATPase mRNA levels, all subsequent experiments were performed using perfused tissues. Levels of H(+)V-ATPase mRNA expression were high in the gill, kidney (anterior or posterior), intestine, heart and spleen, but lower in liver and white muscle. Exposure of the fish to 12 h of external hypercapnia (water P(CO2)=7. 5 mmHg; 1 kPa) was associated with a transient increase (at 2 h) in the levels of H(+)V-ATPase B subunit mRNA in gill and kidney; liver mRNA levels were unaffected. These results are consistent with the hypothesis of an apically localised plasma membrane H(+)V-ATPase in the freshwater trout gill and that the expression of this proton pump is increased during periods of acidosis, at least in part because of an increased steady-state level of H(+)V-ATPase mRNA.

1992 ◽  
Vol 263 (1) ◽  
pp. R195-R200
Author(s):  
G. F. Tu ◽  
A. R. Aldred ◽  
B. R. Southwell ◽  
G. Schreiber

The expression of the cystatin C gene was studied by Northern analysis of RNA isolated from the choroid plexus, other brain tissues, and liver from 11 mammalian and 4 avian species. The probe used for hybridization was cystatin C cDNA isolated previously from a rat choroid plexus cDNA library. Strong conservation of the expression of the cystatin C gene in choroid plexus was suggested by the observation of substantial levels of cystatin C mRNA in choroid plexus RNA from all mammalian and avian species studied. In contrast, levels of cystatin C mRNA in total liver RNA varied widely for mammalian as well as for avian species. It was concluded that the synthesis of cystatin C in choroid plexus has probably been conserved since the stage of the stem reptiles, the common ancestors of mammals and birds. The cystatin C gene was also found to be expressed early in ontogeny, as indicated by the observation of similar cystatin C mRNA levels in choroid plexus RNA from newly hatched and adult chickens.


1992 ◽  
Vol 262 (4) ◽  
pp. C876-C881 ◽  
Author(s):  
M. Pinzani ◽  
H. E. Abboud ◽  
L. Gesualdo ◽  
S. L. Abboud

Macrophage colony-stimulating factor (M-CSF) selectively promotes mononuclear phagocyte survival, proliferation, and differentiation. The production of this factor within the liver may be necessary to support the relatively long-term survival of circulating monocytes as they migrate into tissues and differentiate into macrophages. We studied the constitutive expression and the effects of platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) on M-CSF mRNA levels and secretion of M-CSF in murine liver fat-storing cells (FSC), vascular pericytes likely involved in the development of liver fibrosis. By Northern analysis, using a murine M-CSF cDNA, FSC constitutively express two major transcripts of 4.4 and 2.2 kb, similar to those detected in mouse L cells, used as a control. Exposure to 10 ng/ml PDGF or bFGF increased M-CSF mRNA levels. Peak effects were observed at 3 and 6 h for PDGF and bFGF, respectively, returning to baseline levels by 12 h. Under basal conditions, detectable amounts of M-CSF, measured by radioimmunoassay, were found in cell supernatants conditioned for 8 and 24 h. PDGF and bFGF markedly stimulated the release of M-CSF as early as 8 h, an effect persisting for at least 24 h. These findings suggest that liver FSC release M-CSF upon stimulation by PDGF and bFGF and may contribute to the activation of resident or infiltrating cells in inflammatory liver diseases.


1999 ◽  
Vol 276 (4) ◽  
pp. R1164-R1171 ◽  
Author(s):  
K. M. Kelley ◽  
T. R. Johnson ◽  
J. Ilan ◽  
R. W. Moskowitz

Nonresponsiveness to the growth-stimulatory actions of insulin-like growth factor (IGF)-I in chondrocytes has been reported in a number of disease states associated with impaired glucose metabolism. Primary rabbit chondrocytes were investigated for changes in their IGF response system [type-I IGF receptor and IGF-binding protein (IGFBP) expression] and in their ability to mount a synthetic response to IGF-I [as35S-labeled proteoglycan ([35S]PG) production] in media containing varying ambient glucose concentrations. Whereas basal [35S]PG synthetic rate was unaffected by glucose concentration, synthetic responsiveness to IGF-I was lost in media containing <5 mmol/l glucose or in media containing a “diabetic” glucose concentration (25 mmol/l). IGFBP expression, as measured by Northern analysis of mRNA levels and Western ligand blotting of secreted protein levels, was not significantly altered in the different glucose media, nor were there any differences in the cell surface localization of IGFBPs as assessed by affinity cross-linking with 125I-labeled IGF-I, suggesting that IGFBPs do not induce the IGF-I resistance. The nonresponsiveness to IGF-I in reduced glucose occurred with 25–50% reductions in steady-state levels of IGF type-I receptor mRNA and protein. A significant correlation between IGF receptor mRNA level and synthetic response to IGF-I was observed between 0 and 10 mmol/l glucose concentrations, suggesting that the loss of responsiveness in reduced glucose is manifested at the level of transcription and/or receptor mRNA stability. In contrast, nonresponsiveness to IGF-I in chondrocytes in diabetic glucose concentrations occurred without changes in receptor mRNA and protein levels, suggesting that IGF-I resistance was due to post-ligand-binding receptor defects. It is proposed that IGF-I resistance in chondrocytes subjected to inappropriate glucose levels may constitute an important pathogenic mechanism in degenerative cartilage disorders.


1997 ◽  
Vol 272 (4) ◽  
pp. L665-L672 ◽  
Author(s):  
D. H. Ingbar ◽  
S. Duvick ◽  
S. K. Savick ◽  
D. E. Schellhase ◽  
R. Detterding ◽  
...  

Late in gestation, the prenatal fetal alveolar epithelium switches from fluid secretion to resorption of salt and water via apical sodium channels and basal Na-K-ATPase. The amounts of lung sodium pump activity protein and mRNA increase in the lung just before birth. Because maternal glucocorticoids (GC) may promote maturation of the alveolar epithelium and augment fetal surfactant apoprotein levels, we hypothesized that GC increase the fetal lung Na-K-ATPase alpha- and beta-subunit gene expression in development. Timed-pregnant Sprague-Dawley rats were injected daily with intraperitoneal dexamethasone (1 mg/kg) or saline for 1, 3, or 5 days before death at fetal day (FD) 17 or 19. Maternal GC treatment altered the fetal lung wet to dry weight, decreasing it at FD17 and increasing it at FD19. Northern analysis of total lung RNA for the alpha1- and beta1-pump subunits demonstrated differential regulation of the mRNA in response to GC. At FD17, beta1-mRNA increased after 1 (FD16) or 3 days (FD14-FD16) of GC treatment, whereas alpha1-mRNA was not altered. There were accompanying increases in beta1-, but not alpha1-, protein. At FD19, GC treatment for 5 days (FD14-FD18) increased beta1- and decreased alpha1-mRNA levels, but treatment for 1 (FD18) or 3 days (FD16-FD18) had no effect. In all groups, the alpha1-Na-K-ATPase protein was predominantly on the basolateral surface of airspace epithelium by immunofluorescence. In summary, maternal dexamethasone differentially affected the fetal lung mRNA levels of the two sodium pump subunits in a complex manner, with increased beta1-mRNA levels dependent on duration of treatment and fetal age.


Sign in / Sign up

Export Citation Format

Share Document