Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storagej

2002 ◽  
Vol 205 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Brad A. Seibel ◽  
Patrick J. Walsh

SUMMARY Trimethylamine oxide (TMAO) is a common and compatible osmolyte in muscle tissues of marine organisms that is often credited with counteracting protein-destabilizing forces. However, the origin and synthetic pathways of TMAO are actively debated. Here, we examine the distribution of TMAO in marine animals and report a correlation between TMAO and acylglycerol storage. We put forward the hypothesis that TMAO is derived, at least in part, from the hydrolysis of phosphatidylcholine, endogenous or dietary, for storage as diacylglycerol ethers and triacylglycerols. TMAO is synthesized from the trimethylammonium moiety of choline, thus released, and is retained as a compatible solute in concentrations reflecting the amount of lipid stored in the body. A variation on this theme is proposed for sharks.

2007 ◽  
Vol 30 (3) ◽  
pp. 232-241 ◽  
Author(s):  
Julie Demars ◽  
Juliette Riquet ◽  
Marie-Pierre Sanchez ◽  
Yvon Billon ◽  
Jean-François Hocquette ◽  
...  

Quantitative trait loci (QTL) influencing many traits including backfat thickness and carcass composition have been detected on porcine chromosome 7 (SSC7) in an F2 cross between Large White (LW) and Meishan (MS) pigs. However, the genes and controlled pathways underlying the QTL effects on body phenotype remain unknown. This study aimed at investigating the tissue characteristics at metabolic and cellular levels in pigs that were either homozygous or heterozygous for a body composition SSC7 QTL. A backcross pig (BC3) was first progeny tested to confirm its heterozygoty for the SSC7 QTL; results on all offspring ( n = 80) confirmed the QTL effects on body fatness. This boar was then mated with three sows known to be heterozygous for this QTL. In the subset of pigs per genotype, we found that heterozygous LWQTL7/MSQTL7 pigs had smaller adipocytes in backfat, together with a lower basal rate of glucose incorporation into lipids and lower activities of selected lipogenic enzymes in backfat isolated cells, compared with homozygous LWQTL7/LWQTL7 pigs. A higher number of adipocytes was also estimated in backfat of LWQTL7/MSQTL7 animals compared with LWQTL7/LWQTL7 pigs. The SSC7 QTL did not influence oxidative and glycolytic metabolisms of longissimus and trapezius muscles, as estimated by the activities of specific energy metabolism enzymes, or the myofiber type properties. Altogether, this study provides new evidence for an altered adipocyte cellularity in backfat of pigs carrying at least one MS allele for the SSC7 QTL. Some candidate genes known for their functions on adipocyte growth and differentiation are suggested.


2021 ◽  
Vol 22 (5) ◽  
pp. 2639
Author(s):  
Ana Rita de Oliveira dos Santos ◽  
Bárbara de Oliveira Zanuso ◽  
Vitor Fernando Bordin Miola ◽  
Sandra Maria Barbalho ◽  
Patrícia C. Santos Bueno ◽  
...  

Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. This study aims to review the crosstalk between adipokines, myokines, and hepatokines. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.


1908 ◽  
Vol 28 ◽  
pp. 66-84 ◽  
Author(s):  
Sutherland Simpson

SUMMARYThe body-temperature of the following fishes, crustaceans, and echinoderms has been examined and compared with the temperature of the water in which they live:—Cod-fish (Gadus morrhua), ling (Molva vulgaris), torsk (Brosmius brosme), coal-fish or saithe (Gadus virens), haddock (Gadus œgelfinus), flounder (Pleuronectes flesus), smelt (Osmerus eperlanus), dog-fish (Scyllium catulus), shore crab (Carcinus mœnas), edible crab (Cancer pagurus), lobster (Homarus vulgaris), sea-urchin (Echinus esculentus), and starfish (Asterias rubens). The minimum, maximum, and mean temperature difference for each species are given in the following table:—The excess of temperature is most evident in the larger specimens. This is well shown in the case of the coal-fish, where in the adult it was 0°·7 C., and in the great majority (11 out of 12) of the young of the first year, 0°·0 C. The body-weight and the conditions under which the fish are captured probably form the most important factors in determining the temperature difference.In 14 codfish, where the rectal, blood, and muscle temperatures were recorded in the same individual, it was found to be highest in the muscle and lowest in the rectum, the mean temperature difference being 0°·46 C. for the muscle, 0°·41 C for the blood, and 0°·36 C. for the rectum.


Author(s):  
Sergey Varfolomeev ◽  
Bella Grigorenko ◽  
Sofya Lushchekina ◽  
Alexander Nemuchin

The work is devoted to modeling the elementary stages of the hydrolysis reaction in the active site of enzymes belonging to the class of cholinesterases — acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The study allowed to describe at the molecular level the effect of the polymorphic modification of BChE, causing serious physiolog ical consequences. Cholinesterase plays a crucial role in the human body. AChE is one of the key enzymes of the central nervous system, and BChE performs protective functions in the body. According to the results of calculations using the combined method of quantum and molecular mechanics (KM/MM), the mechanism of the hydrolysis of the native acetylcholine substrate in the AChE active center was detailed. For a series of ester substrates, a method for estimation of dependence of the enzyme reactivity on the structure of the substrate has been developed. The mechanism of hydrolysis of the muscle relaxant of succininylcholine BChE and the effect of the Asp70Gly polymorph on it were studied. Using various computer simulation methods, the stability of the enzyme-substrate complex of two enzyme variants with succinylcholine was studied.


2009 ◽  
Vol 60 (9) ◽  
pp. 885 ◽  
Author(s):  
W. Maher ◽  
S. Foster ◽  
F. Krikowa

Although over 50 arsenic species have been identified in marine organisms, the biochemical pathways by which these species are formed are not known. In this paper, we present an overview of bioconversions of arsenic species that occur in marine food chains based on studies conducted by our laboratory as well as the work of others. Phytoplankton and macroalgae only contain dimethylarsenoribosides or simple methylated arsenic compounds such as dimethylarsenate and dimethylarsenoethanol. Marine animals contain mostly arsenobetaine and a range of other arsenic species that may be precursors of arsenobetaine formation. The formation of arsenobetaine in marine animals from dimethylarsenoribosides may occur through a two-stage conversion pathway: arsenoriboside or trimethylarsonioriboside degradation to arsenocholine followed by quantitative oxidation to arsenobetaine. The minor arsenic species found in marine organisms are sulfur analogues of compounds found in the S-adenosylmethionine-methionine salvage and the dimethylsulfoniopropionate metabolic pathway of animals. A key intermediate in these pathways would be arsenomethionine, which could possibly be formed from dimethylarsinite, dimethylarsenoribosides or an arsenic-containing analogue of S-adenosylmethionine. Examining arsenic species in whole ecosystems has the advantage of using the pattern of arsenic species found to postulate the biochemical pathways of their formation.


Author(s):  
C.G.M. Paxton

A cumulative species description curve (from 1830 to 1995) is given for open water marine fauna in excess of 2 m long in the major axis of the body. This curve has not yet closely approached its asymptote. Estimation by maximum likelihood fit of a hyperbola suggests a maximum of some 47 species awaiting formal scientific description and an approximate current rate of description of one new species every 5·3 years. Consideration of the most recently described species and recent observations by field workers suggests that any imminent species descriptions are most likely to be cetaceans.


Author(s):  
A. Padua ◽  
M. Klautau

Wounds caused by predation and/or physical disturbances to sessile marine animals are common. Consequently, these organisms had to develop strategies to endure such injuries and survive in such a dynamic environment. Sponges are known to possess one of the greatest capacities of regeneration among living metazoans, but this feature has been largely studied only in Demospongiae. In Calcarea, very few species have been investigated. Hence, we analysed the regeneration and speed rates from two regions (osculum and choanosome) of the body of a calcareous sponge: Ernstia sp. Only the osculum regenerated until the end of the experiment, while the choanosome simply cicatrized. Calcareous sponges seem to have a polarized regeneration closely related to their external morphology and level of individuality and integration. A brief review of the regeneration capacity in Calcarea is presented.


2019 ◽  
Author(s):  
Sergey Chebakov ◽  
Vladimir Zhukov ◽  
Lia Tkachenko

Reindeer antler breeding in Altai is a promising industry. Dietary meat and antlers, which are used in Oriental medicine, are received from red deer. In this regard, the study of the morphology of red deer and in particular its digestive system is relevant. The digestive system provides the body with nutrients and energy. Red deer have a four-chamber stomach. 1 – Rumen is the largest part of the stomach, it is used for hydrolysis of feed. It consists of mucous, muscular and serous membranes. The mucous membrane has papillae. 2 – The reticulum is a small part, there are cells on the inner surface, it performs the function of sorting the feed. 3 The omasum separates the liquid fraction of the feed from the dense fraction, has inside flat outgrowths. 4 In the abomasum, the same processes occur as in the single-chambered stomach. The stomach doesn’t develop evenly. Stomach chambers grow most intensively up to 6 months and then up to 2 years. Then their growth energy decreases, the growth is doubtful.


Sign in / Sign up

Export Citation Format

Share Document