scholarly journals Osmotic Regulation in Mosquito Larvae: The Role of the Malpighian Tubules

1951 ◽  
Vol 28 (1) ◽  
pp. 62-73 ◽  
Author(s):  
J. A. RAMSAY

1. The part played by the Malpighian tubules in the salt and water balance of Aedes aegypti larvae has been studied; the intestinal fluid and haemolymph have been compared in respect of freezing-point depression and sodium concentration. 2. It appears highly probable that the fluid passing down the intestine is derived from the Malpighian tubules with little or no contribution from the midgut. 3. When the larvae are kept in fresh water the intestinal fluid is very slightly hypotonic to the haemolymph (not isotonic as previously reported), but its sodium concentration is only about one-half that of the haemolymph. 4. When the larvae are kept in solutions of NaCl the difference in sodium concentration between intestinal fluid and haemolymph decreases. In an external medium of 1% NaCl the difference is abolished. 5. There is thus evidence that when the external medium is poor in salts the Malpighian tubules can contribute to the work of salt retention by excreting a fluid containing less sodium than the haemolymph; but there is no evidence that under any conditions they can excrete a fluid containing more sodium than the haemolymph. 6. Evidence of a decrease in the sodium concentration of the tubule fluid from distal region to proximal region is not statistically significant.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1431-1431
Author(s):  
Jieqing Zhu ◽  
Jiafu Liu ◽  
Yan-Qing Ma ◽  
Zhengli Wang

Abstract Integrin inside-out activation is essential for platelet aggregation mediated by αIIbβ3 and leukocytes migration and arresting mediated by αLβ2. How integrin is activated by the inside-out stimulation is not completely understood. Integrin activation from inside the cell is regulated through the transmembrane and cytoplasmic domains. Mutagenesis and structural studies revealed that the inactive integrin conformation is maintained by the specific interactions at the transmembrane and cytoplasmic domains. Inside-out signals impinging on integrin cytoplasmic domain disturb the transmembrane and cytoplasmic associations, resulting in conformational change of extracellular domain that is required for binding ligands. Studies on the mechanism of integrin inside-out activation have been focused on β cytoplasmic tail that is relatively conserved and bears binding sites for the common intracellular activators including talin and kindlin. The integrin α cytoplasmic tails only share a conserved GFFKR motif at the membrane-proximal region that forms specific interface with the membrane-proximal region of β cytoplasmic tail. The membrane-distal regions after the GFFKR motif are diverse significantly both in length and sequence. Their roles in integrin activation have not been well characterized. In this study, by comprehensive mutagenesis, we defined the role of the membrane-distal region of α integrin cytoplasmic tail in maintaining integrin in the resting state and in integrin inside-out activation. We found that complete deletion of the αIIb cytoplasmic membrane-distal region greatly enhances αIIbβ3 activation induced by the active mutations such as β3-K716A and β3-G708L, indicating that the missing of membrane-distal region facilitates integrin activation, i.e. the αIIb membrane-distal region contributes to the inactive integrin conformation. On the other hand, complete deletion of the αIIb membrane-distal region abolished integrin activation induced by the active mutations of αIIb-R995 and β3-D723, indicating that the αIIb membrane-distal region also contributes to integrin inside-out activation. We demonstrated that deletion of the membrane-distal region of αIIb, αV, or αL integrin greatly diminished ligand binding induced by overexpression of talin-1 head and/or kindlin-2 or -3 in 293FT cells. We further confirmed the effect of α cytoplasmic membrane-distal region on integrin inside-out activation in K562 cells. In the absence of αIIb cytoplasmic membrane-distal region, PMA failed to induce ligand binding to αIIbβ3 integrin expressed in K562 cells. This effect was due to the lack of talin-1-head and kindlin-induced integrin conformational change (ectodomain extension and headpiece opening) in the absence of α cytoplasmic membrane-distal region as reported by the conformation-dependent monoclonal antibodies. Structural superposition of αIIbβ3 transmembrane-cytoplasmic heterodimer and talin-1-head/β-tail complex reveals steric clashes between talin-1 head and the αIIb membrane-distal residues (NR997) immediately follow the GFFKR motif, which has been suggested to play a role in talin-mediated integrin activation. To test this possibility, we retained two native residues, NR997 for the αIIb membrane-distal region and found that it partially restores talin-1-head-induced integrin activation. Replacing the NR997 with small amino acids, GG997 or AA997 has little effect, while with the bulky residues YY997 significantly reduced talin-1-head-induced αIIbβ3 activation. Interestingly, retaining two native residues for the membrane-distal region of αV or αL integrin failed to restore talin-1-head-induced αVβ3 or αLβ2 activation. Retaining as long as 8 native residues for the αL membrane-distal region is not sufficient to restore talin-1-head-induced αLβ2 activation to the level of intact αL. These data demonstrate that a steric clash might play a role but is not the sole mechanism by which the α cytoplasmic membrane-distal region participates in integrin inside-out activation. A proper length and amino acids of the membrane-distal region is required for talin-induced integrin activation. Our data established an essential role of the α integrin cytoplasmic membrane-distal region in integrin activation and provide new insight of how talin and kindlin induce the high affinity integrin conformation that is required for fully functional integrins. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 170 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Sarah N. Salm ◽  
Patricia E. Burger ◽  
Sandra Coetzee ◽  
Ken Goto ◽  
David Moscatelli ◽  
...  

We have previously shown that prostatic stem cells are located in the proximal region of mouse prostatic ducts. Here, we show that this region responds differently to transforming growth factor (TGF)-β than the distal ductal region and that under physiological conditions androgens and TGF-β are crucial overall regulators of prostatic tissue homeostasis. This conclusion is supported by the observations showing that high levels of TGF-β signaling are present in the quiescent proximal region of ducts in an androgen-replete animal and that cells in this region overexpress Bcl-2, which protects them from apoptosis. Moreover, androgen ablation reverses the proximal-distal TGF-β signaling gradient, leading to an increase in TGF-β signaling in the unprotected distal region (low Bcl-2 expression). This reversal of TGF-β–mediated signaling accompanies apoptosis of cells in the distal region and gland involution after androgen withdrawal. A physiological TGF-β signaling gradient (high proximally and low distally) and its functional correlates are restored after androgen replenishment. In addition to highlighting the regulatory role of androgens and TGF-β, these findings may have important implications for the deregulation of the stem cell compartment in the etiology of proliferative prostatic diseases.


1952 ◽  
Vol 29 (1) ◽  
pp. 1-21
Author(s):  
A. D. HOBSON ◽  
W. STEPHENSON ◽  
L. C. BEADLE

1. The total osmotic pressure, electrical conductivity and chloride concentration of the body fluid of Ascaris lumbricoides and of the intestinal contents of the pig have been measured. 2. The results obtained agree with the observations of previous workers that Ascaris normally lives in a hypertonic medium and that it swells or shrinks in saline media which are too dilute or too concentrated. 3. Experiments comparing the behaviour of normal and ligatured animals show that both the body wall and the wall of the alimentary canal are surfaces through which water can pass. 4. 30% sea water has been used as a balanced saline medium for keeping the worms alive in the laboratory. This concentration was selected as being the one in which there was least change in the body weight of the animals exposed to it. 5. The osmotic pressure of the body fluid of worms kept in 30% sea water is approximately the same as in animals taken directly from the pig's intestine. The body fluid of fresh worms is hypertonic to 30% sea water and hypotonic to the intestinal fluid. In 30% sea water the normal osmotic gradient across the body wall is therefore reversed. 6. In 30% sea water the total ionic concentration (as measured by the conductivity) decreases slightly, but the chloride concentration increases by about 50%, although still remaining much below that of the external medium. 7. Experiments in which the animals were allowed to come into equilibrium with various concentrations of sea water from 20 to 40% show that there are corresponding changes in the osmotic pressure of the body fluid which is, however, always slightly above that of the saline medium. The conductivity also changes in a similar manner but is always less than that of the medium, and the difference between the two becomes progressively greater the more concentrated the medium. 8. The chloride concentration of the body fluid varies with but is always below that of the external medium, whether this is intestinal fluid or one of the saline media. In the latter the difference between the internal and external chloride concentrations is least in 20% sea water and becomes progressively greater as the concentration of the medium is increased. 9. Experiments with ligatured worms and with eviscerated cylinders of the body wall show that these share the capacity of the normal worm to maintain the chloride concentration of the body fluid below that of the environment. This power is not possessed by cylinders composed of the cuticle alone. 10. If the worms which have had their internal chloride concentration raised by exposure to 30% sea water are transferred to a medium composed of equal volumes of 30% sea water and isotonic sodium nitrate solution, the chloride concentration of the body fluid is reduced to a value below that of the external medium. This phenomenon is also displayed by worms ligatured after removal from the 30% sea water and, to an even more marked degree, by eviscerated cylinders of the body wall. 11. It is concluded that Ascaris is able to maintain the chloride concentration of the body fluid below that of the external medium by an process of chloride excretion against a concentration gradient, and that this mechanism is resident in the body wall, the cuticle being freely permeable to chloride.


1965 ◽  
Vol 42 (2) ◽  
pp. 359-371
Author(s):  
R. MORRIS

1. Measurements of freezing-point depression and chemical analysis have been made of the plasma and urine of Myxine. 2. The plasma is generally slightly hypertonic to sea water whilst the urine tends to be slightly hypotonic to the blood. 3. The urinary output is low (5·4±1·6 ml./kg./day) and the majority of animals do not swallow sea water. 4. Analyses of plasma and urine indicate that the kidney participates in ionic regulation by reducing the concentrations of calcium, magnesium and sulphate in the plasma relative to sea water. Chloride seems to be conserved whilst potassium may be conserved or excreted. The high concentration of magnesium in the plasma of animals kept in static sea water may be caused by the after effects of urethane. These animals continue to excrete magnesium at normal rates. 5. The rates at which calcium, magnesium and sulphate enter an animal which does not swallow sea water are proportional to the diffusion gradients which exist between the external medium and the plasma. The situation is more complicated for monovalent ions, but there is no evidence of specialized ion-transporting cells within the gill epithelium. 6. In those animals which swallow sea water the amounts of ions absorbed from the gut are very large compared with the renal output and it would therefore seem unlikely that swallowing is part of the normal mechanism of salt and water balance. 7. It is argued that the mechanism of salt and water balance in Myxine is likely to be primitive and that the vertebrate glomerulus was probably developed originally in sea water as an ion-regulating device.


2011 ◽  
Vol 56 (2) ◽  
Author(s):  
Safaa Arafa

AbstractThe musculature of the marginal hooklets of adult Macrogyrodactylus congolensis (Prudhoe, 1957) Yamaguti, 1963 has been studied. Each marginal hooklet of M. congolensis is associated with three pairs of muscles. The possible role of these muscles in the operation of the marginal hooklet is discussed. Transmission electron microscopy has been used for the first time to study the marginal hooklets of M. congolensis. The handle articulates with the blade in the region of the guard. Internally, the handle, the proximal region of the blade in the articulation region and the distal pointed region of the blade consist of three layers. Distal to the articulation region, the blade consists of four layers with differing electron densities. A cavity is associated with the distal region of the blade and the handle. A cyton containing secretory bodies of different sizes and shapes was found in association with each marginal hooklet. The possible function of these secretions is discussed.


1962 ◽  
Vol 203 (2) ◽  
pp. 331-338 ◽  
Author(s):  
C. Robert Cooke ◽  
W. Gordon Walker ◽  
David J. Andrew ◽  
Adoracion B. Paulino

Stop flow patterns of sodium, urea, and osmolality were obtained in dogs producing hypotonic urine following water loading, water loading plus urea, and water loading plus urea plus Pitressin. "Distal" and "proximal" peaks in osmolality, separated by a region where osmolality fell to or below free flow values, were regularly observed during water diuresis and water plus urea. The region of minimal osmolal concentration coincided with the distal region of minimal sodium concentration. In more proximal samples sodium concentration rose sharply above free flow levels to a maximum that coincided with and was adequate to account for the proximal osmolality peak. The proximal rise in osmolality, accompanied by a sharp rise in sodium concentration in the absence of a concomitant proximal rise in creatinine suggests re-entry of sodium into some proximal region of the nephron, probably the descending portion of Henle's loop. Urea showed a distal concentration rise but no proximal rise. Following Pitressin administration, the two osmolality peaks and the proximal sodium peak are obliterated and replaced by a single distal osmolality peak.


1953 ◽  
Vol 4 (2) ◽  
pp. 317 ◽  
Author(s):  
ID Hiscock

The chlorinities of the blood and pericardial fluid of H. australis are similar, but always exceed those of the normal external medium. A study of blood chloride changes in mussels in media of different concentrations has shown that immediately following a change of medium there is a change in blood chlorinity, which tends to assume a new equilibrium level within 24 hr. The rapidity with which this change occurs depends upon the difference between the chlorinity of the blood and that of the external medium. A study of water exchange under identical conditions has shown that significant changes occur in the hydration of the mussel. In hypotonic media the mussel can regulate its water content; in hypertonic media it cannot, but its hydration assumes a new level within 24 hr. It is concluded that some part of the body surface is permeable to both salts and water. The urine of the mussel is hypotonic to the blood; it remains remarkably stabre in chlorinity despite changes in blood chlorinity. The role of the kidney as a regulating organ is discussed. The significance of shell movements in osmoregulation is demonstrated. Shell closure has been shown to be an effective seal from the external medium, allowing the mussel to resist desiccation.


Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


1988 ◽  
Vol 27 (04) ◽  
pp. 151-153
Author(s):  
P. Thouvenot ◽  
F. Brunotte ◽  
J. Robert ◽  
L. J. Anghileri

In vitro uptake of 67Ga-citrate and 59Fe-citrate by DS sarcoma cells in the presence of tumor-bearing animal blood plasma showed a dramatic inhibition of both 67Ga and 59Fe uptakes: about ii/io of 67Ga and 1/5o of the 59Fe are taken up by the cells. Subcellular fractionation appears to indicate no specific binding to cell structures, and the difference of binding seems to be related to the transferrin chelation and transmembrane transport differences


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


Sign in / Sign up

Export Citation Format

Share Document