The Nervous Pathways For Poisoning, Eating and Learning in Octopus

1965 ◽  
Vol 43 (3) ◽  
pp. 581-593
Author(s):  
J. Z. YOUNG

1. Octopuses after removal of the lip kill and eat crabs apparently normally. They learn to attack a strange figure moving in the visual field. 2. The pair of nerves that originates from cells at the back of the superior buccal lobe is shown to be responsible for the discharge of secretion from the posterior salivary glands. If this pair of nerves is interrupted the octopus does not poison a crab after catching it. It still eats, however, and learns to attack a strange figure. 3. If both interbuccal connectives have been severed the octopus does not remove the flesh properly from crabs. It does not learn to attack a strange figure. 4. Any operation on the central nervous system that interrupts the pathway from the interbuccal connectives to the lateral superior frontal and optic lobes prevents learning to attack a figure that has been seen. 5. If such cuts pass through the middle of the superior buccal lobe the animal does not poison crabs or completely remove the flesh from their exoskeletons. 6. If the cut is through the back of the superior buccal lobe the octopus does not poison crabs but may tear them open and then clean and eat them. 7. With cuts still farther back the animal poisons, cleans and eats crabs, but still does not learn to attack.

1975 ◽  
Vol 38 (5) ◽  
pp. 285-300 ◽  
Author(s):  
A. G. HUGUNIN ◽  
R. L. BRADLEY

Mercury is naturally concentrated in geographical belts, but geological cycling has distributed the element in all strata of the earth. Natural concentrations of mercury are approximately 100 ppb in soil, 0.06 ppb in fresh water, 0.01–0.30 ppb in sea water, and 0.003–0.009 μg/m3 in air. Concentrations vary, being highest near mineral deposits. The concentration of mercury in some areas has been significantly increased by human carelessness. An epidemic among Japanese fishing families, death of Swedish wildlife, and discovery of elevated mercury levels in American fish focused attention on this problem. The discovery that certain species are capable of methylating inorganic mercury indicates pollution with any chemical form of mercury is dangerous. Alkylmercurials are the most dangerous form of mercury in the environment. Alkylmercurials are absorbed from the gastrointestinal tract, diffuse across the blood-brain carrier, and pass through the placental membrane in significantly higher proportions than other mercury compounds. The whole body half-life of methyl mercury in humans is 76 ± 3 days compared to half-lives of 37 ± 3 days for men and 48 ± 5 days for women observed for mercuric salts. Not readily broken down, sufficient concentrations of methyl mercury can cause irreversible damage to the central nervous system. Renal damage usually results from high levels of aryl- or alkoxyalkylmercurials and inorganic mercury; however, vapors of elemented mercury can damage the central nervous system. Organic mercury compounds cause chromosome changes, but the medical implications resulting from levels of mercury in food are unknown. The concentration of mercury in red blood cells and hair is indicative of the exposure to alkylmercurials. On a group basis, blood and urine concentrations of mercury may corrrelate with recent exposure to mercury.


The tracheal supply to the central nervous system of the locust has been revealed by staining with cobalt sulphide. Air that enters through the first pair of thoracic spiracles is carried first to the brain and then to the rest of the central nervous system. The air is expelled through the abdominal spiracles, so that there is a one-way circulation with diffusional exchange only in the blindly ending tracheae that enter the brain or ganglia. Once inside a ganglion, the tracheae branch profusely to end in a mass of fine tracheoles through which gaseous exchange takes place. The densest tracheation is in the neuropile areas, where the spacing between tracheoles is about 17 μm. In the optic lobes, where there is order to the synaptic arrangement of a neuropile, there is a matching orderliness of the tracheation. Cortical areas, which contain the cell bodies of neurons, have only a sparse tracheation. It may be concluded that it is the processes associated with synaptic transmission that require the most immediate access to the sites of gaseous exchange.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Yasuhiro Ishihara ◽  
Takuya Takemoto ◽  
Atsuhiko Ishida ◽  
Takeshi Yamazaki

Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury.


2021 ◽  
Vol 22 (8) ◽  
pp. 4118
Author(s):  
Frederik Desmarais ◽  
Vincent Hervé ◽  
Karl F. Bergeron ◽  
Gaétan Ravaut ◽  
Morgane Perrotte ◽  
...  

Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. In rodent, the bulk of its expression occurs in the central nervous system. Despite this, ApoD has profound effects in peripheral tissues, indicating that neural ApoD may reach peripheral organs. We endeavor to determine if cerebral ApoD can reach the circulation and accumulate in peripheral tissues. Three hours was necessary for over 40% of all the radiolabeled human ApoD (hApoD), injected bilaterally, to exit the central nervous system (CNS). Once in circulation, hApoD accumulates mostly in the kidneys/urine, liver, and muscles. Accumulation specificity of hApoD in these tissues was strongly correlated with the expression of lowly glycosylated basigin (BSG, CD147). hApoD was observed to pass through bEnd.3 blood brain barrier endothelial cells monolayers. However, cyclophilin A did not impact hApoD internalization rates in bEnd.3, indicating that ApoD exit from the brain is either independent of BSG or relies on additional cell types. Overall, our data showed that ApoD can quickly and efficiently exit the CNS and reach the liver and kidneys/urine, organs linked to the recycling and excretion of lipids and toxins. This indicated that cerebral overexpression during neurodegenerative episodes may serve to evacuate neurotoxic ApoD ligands from the CNS.


2011 ◽  
Vol 31 (10) ◽  
pp. 922-925 ◽  
Author(s):  
Luiz F. P Vieira ◽  
Sílvia R.F.G Pereira ◽  
Aline C Galante ◽  
Juliana G Castilho ◽  
Rafael N Oliveira ◽  
...  

Rabies is a neurological disease, but the rabies virus spread to several organs outside the central nervous system (CNS). The rabies virus antigen or RNA has been identified from the salivary glands, the lungs, the kidneys, the heart and the liver. This work aimed to identify the presence of the rabies virus in non-neuronal organs from naturally-infected vampire bats and to study the rabies virus in the salivary glands of healthy vampire bats. Out of the five bats that were positive for rabies in the CNS, by fluorescent antibody test (FAT), viral isolation in N2A cells and reverse transcription - polymerase chain reaction (RT-PCR), 100% (5/5) were positive for rabies in samples of the tongue and the heart, 80% (4/5) in the kidneys, 40% (2/5) in samples of the salivary glands and the lungs, and 20% (1/5) in the liver by RT-PCR test. All the nine bats that were negative for rabies in the CNS, by FAT, viral isolation and RT-PCR were negative for rabies in the salivary glands by RT-PCR test. Possible consequences for rabies epidemiology and pathogenesis are discussed in this work.


Author(s):  
Kaoru Murakami ◽  
Yuki Tanaka ◽  
Masaaki Murakami

Abstract We have been studying inflammatory diseases, with a special focus on IL-6, and discovered two concepts related to inflammation development. One is the gateway reflex, which is induced by the activation of specific neural circuits followed by establishing gateways for autoreactive CD4+ T cells to pass through blood barriers toward the central nervous system (CNS) and retina during tissue-specific inflammatory diseases. We found that the formation of these gateways is dependent on the IL-6 amplifier, which is machinery for enhanced NF-κB activation in endothelial cells at specific sites. We have found five gateway reflexes in total. Here, we introduce the gateway reflex and the IL-6 amplifier.


2020 ◽  
Author(s):  
Jan A. Veenstra

AbstractThe SMYamide genes are paralogs of the SIFamide genes and code for neuropeptides that are structurally similar to SIFamide. In the American cockroach, Periplanea americana, the SMYamide gene is specifically expressed in the SN2 neurons that innervate the salivary glands and are known to produce action potentials during feeding. The innervation of the salivary glands by the SN2 neurons is such that one has to expect that on activation of these neurons significant amounts of SMYamide will be released into the hemolymph, thus suggesting that SMYamide also functions as a hormone. In the Periplaneta genome there are two putative SIFamide receptors and these are both expressed not only in the central nervous system and the salivary gland, but also in the gonads and other peripheral tissues. This reinforces the hypothesis that SMYamide also has an endocrine function in this species.


Sign in / Sign up

Export Citation Format

Share Document