The effect of temperature on the outward currents in the soma of molluscan neurones in voltage-clamp conditions

1975 ◽  
Vol 62 (2) ◽  
pp. 265-275
Author(s):  
I. S. Masgura ◽  
A. E. Valeyev ◽  
I. Z. Zamekhovsky

The delayed outward current in snail neurones was separated into two components with different temperature sensitivity: (i) a persistent component and (ii) a transient (inactivating) component. The effect of cooling on the value of the transient current is strongly dependent upon the value of the conditioning potential. It was supposed that cooling causes a decrease in the negative surface potential in the vicinity of the potassium pathways and removes their inactivation. Simultaneously cooling depresses the potassium conductance. The effect on surface potential is more distinct with conditioning potentials at which a significant fraction of the transient outward current is inactivated. The effect of cooling on the transient component of the fast outward current was similar to that on the transient component of the delayed outward current.

1994 ◽  
Vol 266 (3) ◽  
pp. H1184-H1194 ◽  
Author(s):  
J. Sanchez-Chapula ◽  
A. Elizalde ◽  
R. Navarro-Polanco ◽  
H. Barajas

In adult rabbit ventricular preparations, action potential duration is significantly increased when stimulation frequency is increased from 0.1 to 1.0 Hz. In neonatal preparations, a similar change in stimulation frequency produced no significant increase in action potential duration. To identify the ionic basis for this difference, we studied different outward currents in single myocytes from papillary muscle and from epicardial tissue of adult and neonatal rabbits. The densities of the outward currents in neonatal cells were about one-half of the current density in adult cells. The density of the voltage-activated transient outward current (I(to1)) was smaller in cells from papillary muscle than in cells from epicardium in adult and newborn rabbits. We found major differences in the kinetic behavior of I(to1) between adult and neonatal cells: 1) the rate of apparent inactivation was faster in neonatal cells, and 2) the recovery from inactivation was significantly faster in neonatal cells, with a time constant of 113 vs. 1,356 ms. We propose that this marked difference in the recovery from inactivation of I(to1) is the basis for the difference in frequency dependence of action potential duration.


1990 ◽  
Vol 63 (4) ◽  
pp. 725-737 ◽  
Author(s):  
S. K. Florio ◽  
C. D. Westbrook ◽  
M. R. Vasko ◽  
R. J. Bauer ◽  
J. L. Kenyon

1. We used the patch-clamp technique to study voltage-activated transient potassium currents in freshly dispersed and cultured chick dorsal root ganglion (DRG) cells. Whole-cell and cell-attached patch currents were recorded under conditions appropriate for recording potassium currents. 2. In whole-cell experiments, 100-ms depolarizations from normal resting potentials (-50 to -70 mV) elicited sustained outward currents that inactivated over a time scale of seconds. We attribute this behavior to a component of delayed rectifier current. After conditioning hyperpolarizations to potentials negative to -80 mV, depolarizations elicited transient outward current components that inactivated with time constants in the range of 8-26 ms. We attribute this behavior to a transient outward current component. 3. Conditioning hyperpolarizations increased the rate of activation of the net outward current implying that the removal of inactivation of the transient outward current allows it to contribute to early outward current during depolarizations from negative potentials. 4. Transient current was more prominent on the day the cells were dispersed and decreased with time in culture. 5. In cell-attached patches, single channels mediating outward currents were observed that were inactive at resting potentials but were active transiently during depolarizations to potentials positive to -30 mV. The probability of channels being open increased rapidly (peaking within approximately 6 ms) and then declined with a time constant in the range of 13-30 ms. With sodium as the main extracellular cation, single-channel conductances ranged from 18 to 32 pS. With potassium as the main extracellular cation, the single-channel conductance was approximately 43 pS, and the channel current reversed near 0 mV, as expected for a potassium current. 6. We conclude that the transient potassium channels mediate the component of transient outward current seen in the whole-cell experiments. This current is a relatively small component of the net current during depolarizations from normal resting potentials, but it can contribute significant outward current early in depolarizations from hyperpolarized potentials.


1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


Hypertension ◽  
2021 ◽  
Vol 77 (4) ◽  
pp. 1412-1427
Author(s):  
Xiang-Qun Hu ◽  
Chiranjib Dasgupta ◽  
Rui Song ◽  
Monica Romero ◽  
Sean M. Wilson ◽  
...  

Hypoxia during pregnancy is a major contributor to the pathogenesis of preeclampsia and intrauterine growth restriction. Our recent studies revealed that pregnancy-induced uterine vascular adaptation depended on the enhanced Ca 2+ spark/spontaneous transient outward current (STOC) coupling and hypoxia during gestation diminished this adaption. In the present study, we test the hypothesis of a mechanistic link of microRNA-210 (miR-210) in hypoxia-impaired Ca 2+ spark/STOC coupling in uterine arteries. Pregnant ewes acclimatized to high-altitude (3801 m) hypoxia for ≈110 days significantly increased circulation levels of miR-210 in both the ewe and her fetus. Treatment of uterine arteries from high-altitude animals with the antagomir miR-210-LNA recovered hypoxia-repressed STOCs in pregnant ewes and restored the hormonal regulation of STOCs in nonpregnant animals. In uterine arteries from low-altitude control animals, miR-210 mimic suppressed STOCs in pregnant ewes and inhibited the hormonal regulation of STOCs in nonpregnant animals. Mechanistically, miR-210 directly targeted and downregulated type 2 ryanodine receptor and large-conductance Ca 2+ -activated K + channel β1 subunit, resulting in significant decreases in Ca 2+ sparks and STOCs in uterine arteries. In addition, miR-210 indirectly decreased STOCs by targeting ten-eleven translocation methylcytosine dioxygenase. Together, the present study revealed a mechanistic link of miR-210 in hypoxia-induced repression of Ca 2+ spark/STOC coupling in uterine arteries during gestation, providing novel insights into the understanding of pregnancy complications associated with hypoxia and the potential therapeutic targets.


1997 ◽  
Vol 273 (3) ◽  
pp. H1386-H1394 ◽  
Author(s):  
R. Aggarwal ◽  
J. Pu ◽  
P. A. Boyden

Myocytes from the epicardial border zone (EBZ) of the 5-day infarcted canine heart (IZ) have abnormal transmembrane action potentials, reduced L-type Ca2+ currents (ICa,L) and altered intracellular Ca2+ (Cai) transients compared with those of normal epicardial myocytes (NZ). We hypothesized that altered Cai cycling might be reflected in differences in Cai-dependent outward currents (Ito2). We recorded Ito2 in NZ and IZ using whole cell patch-clamp techniques. Ito2 was defined as the amplitude of the 4-aminopyridine-resistant transient outward current that was blocked by 200 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or DIDS+ ryanodine (2 microM). Ito2 were present in both NZ and IZ, but peak density was significantly reduced in IZ, particularly at positive plateau voltages. Time course of decay of Ito2 was biexponential and similar in NZ and IZ. A given peak ICa,L was usually associated with a smaller peak Ito2 in IZ. These differences were exaggerated when Ito2 and Cai transients were determined in rapidly paced cells. In summary, myocytes surviving in the EBZ of the infarcted heart have Ito2, yet they are reduced in density and can vary, particularly at fast pacing rates.


1995 ◽  
Vol 198 (7) ◽  
pp. 1483-1492 ◽  
Author(s):  
A Chrachri

Ionic currents from freshly isolated and identified swimmeret motor neurones were characterized using a whole-cell patch-clamp technique. Two outward currents could be distinguished. A transient outward current was elicited by delivering depolarizing voltage steps from a holding potential of -80 mV. This current was inactivated by holding the cells at a potential of -40 mV and was also blocked completely by 4-aminopyridine. A second current had a sustained time course and continued to be activated at a holding potential of -40 mV. This current was partially blocked by tetraethylammonium. These outward currents resembled two previously described potassium currents: the K+ A-current and the delayed K+ rectifier current respectively. Two inward currents were also detected. A fast transient current was blocked by tetrodotoxin and inactivated at holding potential of -40 mV, suggesting that this is an inward Na+ current. A second inward current had a sustained time course and was affected neither by tetrodotoxin nor by holding the cell at a potential of -40 mV. This current was substantially enhanced by the addition of Ba2+ to the bath or when equimolar Ba2+ replaced Ca2+ as the charge carrier. Furthermore, this current was significantly suppressed by nifedipine. All these points suggest that this is an L-type Ca2+ current. Bath application of nifedipine into an isolated swimmeret preparation affected both the frequency of the swimmeret rhythm and the duration of power-stroke activity, suggesting an important role for the inward Ca2+ current in maintaining a regular swimmeret rhythmic activity in crayfish.


1995 ◽  
Vol 74 (5) ◽  
pp. 2043-2050 ◽  
Author(s):  
J. A. David ◽  
R. M. Pitman

1. Membrane currents have been examined in the cell body of the fast coxal depressor motor neuron (Df) of the cockroach Periplaneta americana with the use of two-electrode voltage clamp. 2. Most of the outward current induced by membrane depolarizations to between -40 and +80 mV was carried by K+ because it was blocked by external tetraethylammonium+ (TEA+; 20 mM) and internal Cs+. 3. Over the potential range -20 to +80 mV, a large proportion of this TEA+/Cs(+)-sensitive K+ current consisted of two temporal components, a transient outward current (IKtrans) and a sustained outward current (IKsus). IKtrans and a large proportion of IKsus appeared to be calcium-activated potassium currents (IK,Ca,trans and IK,Ca,sus, respectively) because these were suppressed by injecting ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), removing Ca2+ from the saline or replacing Ca2+ with Ba2+. After suppression of IK,Ca by internal EGTA or Ca(2+)-free saline, membrane depolarizations positive to -40 mV induced voltage-dependent outward currents (IK,V), which consisted of single-component outward relaxations. 4. When outward currents were blocked by external TEA+/internal Cs+, a voltage-dependent inward current consisting of a transient and a sustained component was observed over the potential range -40 to +40 mV. Both components of this inward current appeared to be carried by Ca2+ because they were blocked by external Cd2+ (1 mM), verapamil (0.1 mM), nifedipine (0.1 mM), or diltiazem (0.1 mM). 5. Both the transient component of the calcium current (ICa,trans) and the sustained component (ICa,sus) were maximal at 0 mV and present when Ca2+ in the saline were replaced by Ba2+. The inactivation of ICa,trans is voltage dependent, the rate of inactivation increasing with membrane depolarization. 6. The current-voltage relationships of Ca2+ currents differed from those of calcium-activated K+ currents. It is proposed that the discrepancy between these current-voltage relationships arises from the rapidity with which IK,Ca is saturated by Ca2+ entering through voltage-dependent channels and because the apparent reversal potential for ICa is not at ECa. 7. Although the similarity in the shape of IK,Ca and ICa might suggest that the time course of IK,Ca is determined by the kinetics of ICa, this appears unlikely in view of the rapid saturation of IK,Ca by Ca2+, which considerably outlasts the period of Ca2+ influx.


1987 ◽  
Vol 252 (4) ◽  
pp. C401-C410 ◽  
Author(s):  
Y. Ohya ◽  
K. Kitamura ◽  
H. Kuriyama

The nature of transient and oscillatory outward currents (ITO and IOO) in fragmented smooth muscle cells (smooth muscle ball, SMB) from the longitudinal muscle layer of the rabbit ileum, was studied using a single electrode voltage clamp technique. With a high K+ solution containing 0.3 mM ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) in the pipette and physiological salt solution (PSS) in the bath, the Ca inward current was followed by a large transient outward current (ITO) and spontaneous oscillations of the outward current (IOO) on the sustained outward current (ISO) were elicited by a depolarizing pulse, positive to -30 mV (holding potential of -60 mV). When the internal fluid of the SMB was replaced with Cs+-tetraethylammonium+ (TEA+) solution, or when the concentration of EGTA in the pipette was increased to 4 mM, using the intracellular perfusion technique, both ITO and IOO were abolished. In Mn2+ solution both currents were also inhibited. Bath application of TEA+, procaine or A23187 completely blocked both ITO and IOO. Caffeine (0.3-1 mM) enhanced the amplitude of ITO and generations of IOO, and concentrations of caffeine over 3 mM transiently enhanced, but finally suppressed both these currents. These results suggest that the generation of ITO is closely related to the Ca2+ influx, whereas the generation of IOO may be initiated by an increment in the intracellular concentration of Ca2+, possibly released from store sites.


1999 ◽  
Vol 81 (6) ◽  
pp. 2937-2944 ◽  
Author(s):  
Shin-Ichi Sekizawa ◽  
Andrew S. French ◽  
Ulli Höger ◽  
Päivi H. Torkkeli

Voltage-activated potassium outward currents in two types of spider mechanoreceptor neurons. We studied the properties of voltage-activated outward currents in two types of spider cuticular mechanoreceptor neurons to learn if these currents contribute to the differences in their adaptation properties. Both types of neurons adapt rapidly to sustained stimuli, but type A neurons usually only fire one or two action potentials, whereas type B neurons can fire bursts lasting several hundred milliseconds. We found that both neurons had two outward current components, 1) a transient current that activated rapidly when stimulated from resting potential and inactivated with maintained stimuli and 2) a noninactivating outward current. The transient outward current could be blocked by 5 mM tetraethylammonium chloride, 5 mM 4-aminopyridine, or 100 μM quinidine, but these blockers also reduced the amplitude of the noninactivating outward current. Charybdotoxin or apamin did not have any effect on the outward currents, indicating that Ca2+-activated K+ currents were not present or not inhibited by these toxins. The only significant differences between type A and type B neurons were found in the half-maximal activation ( V 50) values of both currents. The transient current had a V 50 value of 9.6 mV in type A neurons and −13.1 mV in type B neurons, whereas the V 50 values of noninactivating outward currents were −48.9 mV for type A neurons and −56.7 mV for type B neurons. We conclude that, although differences in the activation kinetics of the voltage-activated K+ currents could contribute to the difference in the adaptation behavior of type A and type B neurons, they are not major factors.


1993 ◽  
Vol 265 (4) ◽  
pp. H1466-H1470 ◽  
Author(s):  
J. Mansourati ◽  
B. Le Grand

In human atrial fibers, the action potential undergoes a major developmental change in shape in the months immediately after birth. Transient potassium outward currents, which may affect the shape of the action potential, have been studied using a whole cell voltage-clamp technique with single cells from the atria of young patients aged 3-60 mo. Transient outward current (I(to)) amplitude was measured as the difference between the peak current and the steady-state outward current (I(late)) at the end of the voltage step. The density of I(to) was significantly reduced in adult diseased cells (n = 18) compared with normal cells (n = 21) in a large range of potential and absent in young diseased cells (n = 13). Furthermore, the I(late) recorded in young cells was significantly greater (23.7 +/- 5.74 pA/pF at 60 mV) than in adult normal cells (12.71 +/- 2.25 pA/pF at 60 mV), whereas I(late) was not significantly different between both groups of adult cells. Nevertheless, a 4-aminopyridine-sensitive I(to) has been recorded in young cells. A decrease in the frequency of clamp steps (from 0.1 to 0.01 Hz) did not reactivate a I(to) in young cells. This absence of 4-aminopyridine-sensitive Ito in young cells probably results from either a normal developmental change of this current or from pathological alterations like those described in adult diseased atria.


Sign in / Sign up

Export Citation Format

Share Document