FERONIA regulates FLS2 plasma membrane nanoscale dynamics to modulate plant immune signaling

2020 ◽  
Author(s):  
Marc Somssich
Author(s):  
Julien Gronnier ◽  
Christina M. Franck ◽  
Martin Stegmann ◽  
Thomas A. DeFalco ◽  
Alicia Abarca Cifuentes ◽  
...  

ABSTRACTCell surface receptors survey and relay information to ensure the development and survival of multicellular organisms. In the model plant Arabidopsis thaliana, the Catharanthus roseus RLK1-like receptor kinase FERONIA (FER) regulates myriad of biological processes to coordinate development, growth and responses to the environment. We recently showed that FER positively regulates immune signaling by controlling the ligand-induced complex formation between the leucine-rich repeat receptor kinase (LRR-RK) FLAGELLIN SENSING 2 (FLS2) and its co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3). In this context, FER function is inhibited by binding of its peptide ligand RAPID ALKALINIZATION FACTOR 23 (RALF23). However, the mechanisms by which FER regulates FLS2-BAK1 complex formation remain unclear. Here, we show that FER-dependent regulation of immune signaling is independent of its kinase activity, indicating that FER rather plays a structural role. FER has been proposed to bind directly to the plant cell wall, but we found that a FER mutant unable to bind pectin is still functional in regulating immune signaling. Instead, FER- and cell wall-associated LEUCINE RICH REPEAT-EXTENSIN proteins are required for this regulation. Using high-resolution live-imaging and single-particle tracking, we observed that FER regulates FLS2 plasma membrane nanoscale dynamics, which may explain its role in controlling ligand-induced FLS2-BAK1 association. We propose that FER acts as an anchoring point connecting cell wall and plasma membrane nano-environments to enable the nucleation of pre-formed receptor/co-receptor complexes at the cell surface.


2010 ◽  
Vol 107 (15) ◽  
pp. 6829-6834 ◽  
Author(s):  
S. J. Sahl ◽  
M. Leutenegger ◽  
M. Hilbert ◽  
S. W. Hell ◽  
C. Eggeling

mBio ◽  
2021 ◽  
Author(s):  
Ramona Businger ◽  
Saima Kivimäki ◽  
Stefan Simeonov ◽  
Georgios Vavouras Syrigos ◽  
Justus Pohlmann ◽  
...  

The PM is a key component that viruses have to cope with. It is a barrier for infection and egress and is critically involved in antiviral immune signaling.


2019 ◽  
Author(s):  
Kerstin Pinkwart ◽  
Falk Schneider ◽  
Martyna Lukoseviciute ◽  
Tatjana Sauka-Spengler ◽  
Edward Lyman ◽  
...  

AbstractCholesterol constitutes approximately 30-40% of the mammalian plasma membrane — a larger fraction than any other single component. It is a major player in numerous signalling processes as well as molecular membrane architecture. However, our knowledge on dynamics of cholesterol in the plasma membrane is limited which restricts our understanding of the mechanisms regulating its involvement in cell signalling. Here, advanced fluorescence imaging and spectroscopy approaches were applied on in vitro (model membranes) and in vivo (live cells and embryos) membranes to systematically study the nanoscale dynamics of cholesterol in biological membranes. The results show that cholesterol diffuses faster than phospholipids in live membranes, but not in model membranes. The data indicate that diffusion of cholesterol and phospholipids is not correlated with membrane domain partitioning. Instead, our data show that the fast diffusion of cholesterol is due to its nanoscale interactions and localization in the membrane.


2019 ◽  
Author(s):  
Dongqin Chen ◽  
Nagib Ahsan ◽  
Jay J. Thelen ◽  
Gary Stacey

SUMMARYS-Acylation is a reversible protein post-translational modification mediated by Protein S-acyltransferases (PATs). Here, we demonstrate that three plant immune receptors P2K1 (DORN1), FLS2 and CERK1, representing three distinct families of receptor like-kinases, are S-acylated by Arabidopsis PAT5 and PAT9 on the plasma membrane (PM). Mutations in Atpat5 and Atpat9 resulted in an elevated plant immune response, increased phosphorylation and decreased degradation of FLS2, P2K1 and CERK1 during immune signaling. Mutation of key cysteine residues S-acylated in these receptors resulted in a similar phenotype as exhibited by Atpat5/Atpat9 mutant plants. The data indicate that S-acylation also controls localization of the receptors in distinct PM nanodomains and, thereby, controls the formation of specific protein-protein interactions. Our study reveals that S-acylation plays a critical role in mediating spatiotemporal dynamics of plant receptors within PM nanodomains, suggesting a key role for this modification in regulating the ability of plants in respond to external stimuli.


2014 ◽  
Vol 166 (1) ◽  
pp. 327-336 ◽  
Author(s):  
Hidenori Matsui ◽  
Masayuki Fujiwara ◽  
Satoshi Hamada ◽  
Ko Shimamoto ◽  
Yuko Nomura ◽  
...  

2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S192
Author(s):  
Koichiro M. Hirosawa ◽  
Kenta J. Yoshida ◽  
Ankita Chadda ◽  
Kenichi G. N. Suzuki ◽  
Akihiro Kusumi

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Julien Gronnier ◽  
Christina M Franck ◽  
Martin Stegmann ◽  
Thomas A DeFalco ◽  
Alicia Abarca ◽  
...  

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness, regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modulation of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yiran Zang ◽  
Ming Wan ◽  
Min Liu ◽  
Hongmei Ke ◽  
Shuangchun Ma ◽  
...  

Many chronic diseases are associated with fibrotic deposition of Collagen and other matrix proteins. Little is known about the factors that determine preferential onset of fibrosis in particular tissues. Here we show that plasma membrane (PM) overgrowth causes pericellular Collagen accumulation in Drosophila adipocytes. We found that loss of Dynamin and other endocytic components causes pericellular trapping of outgoing Collagen IV due to dramatic cortex expansion when endocytic removal of PM is prevented. Deposits also form in the absence of negative Toll immune regulator Cactus, excess PM being caused in this case by increased secretion. Finally, we show that trimeric Collagen accumulation, downstream of Toll or endocytic defects, activates a tissue damage response. Our work indicates that traffic imbalances and PM topology may contribute to fibrosis. It also places fibrotic deposits both downstream and upstream of immune signaling, consistent with the chronic character of fibrotic diseases.


Sign in / Sign up

Export Citation Format

Share Document