Meshing analysis of a gear with a ring-involute gear

Author(s):  
S-C Yang

The surface of a gear with ring-involute teeth generated by a rack cutter with ring-involute teeth is a new type of gear. This paper describes a method developed from gear theory for deriving a pinion and a gear with ring-involute teeth. A gear with ring-involute teeth is regarded as an envelope to the family of rack cutter surfaces when the pinion and gear rotate for a cycle. Using a developed mathematical model, the investigation on the undercutting analysis of the proposed gear is studied. Here the kinematic errors are investigated according to the obtained geometric modelling of the designed gear meshing when assembly errors were present. Stress analysis for the proposed gear was performed. Finally, a numerical example is presented to demonstrate the geometric model of a gear with ring-involute teeth and a gear ratio of 3:2.

Author(s):  
S-C Yang

In this article, an imaginary conical cutter was used to determine the geometric models of the worm—gear mechanism including a worm and a gear. Mathematical models of the worm and the gear were derived using an imaginary conical cutter and gear theory. Based on the geometric relations between the worm and conical cutter surfaces and between the gear and conical cutter surfaces, the worm and the gear were regarded as an envelope to the family of conical cutter surfaces when they rotated for one cycle. Using the developed mathematical model, the stress analysis of the proposed mechanism was examined. The results show that the von Mises stress and volume of the proposed worm and gear were smaller than those of the conventional worm—gear mechanism. Lastly, a numerical example was used to illustrate the geometric model of a gear and a worm with a gear ratio of 30:1.


2007 ◽  
Vol 31 (2) ◽  
pp. 219-234 ◽  
Author(s):  
Yang Shyue-Cheng ◽  
Tsang-Lang Liang

A geometric model and a mathematical model of a PP-type single screw rotor with planar gate rotor are derived from the gate-rotor generation process and gear theory. The teeth of gate rotor are planar. Based on the inverse envelope concept, the cutter required for machining the single screw rotor can be obtained using an inverse envelope of a one-parameter family of screw surfaces. The surface of the proposed screw rotor is analyzed using the developed mathematical model. A surface analysis, including stress analysis, of the design and manufacture of the screw compressor is presented. Finally, a numerical example demonstrates the geometric model of the PP-type single screw rotor with a compression ratio of 11:6.


1988 ◽  
Vol 110 (4) ◽  
pp. 482-491 ◽  
Author(s):  
Chung-Biau Tsay

The paper covers the solutions to the following problems: (1) Setting up a mathematical model for the involute helical gears; (2) Computer simulation of the conditions of meshing and bearing contact; (3) Investigation of the sensitivity of gears to the errors of manufacturing and assembly; and (4) Stress analysis of the gears. In this paper, the theory of gearing and the concept of differential geometry have been applied to deal with the relations of two mating helical gears and their bearing contact. Computer program for tooth contact analysis (T.C.A.) has been developed for the gears. The T.C.A. computer program makes it possible to simulate gear meshing and bearing contact, and to investigate the influence of gear misalignment on kinematic errors. A method of compensation for the dislocation of bearing contact and for kinematic errors induced by errors of manufacturing and assembly has been proposed. Four numerical examples have also been presented to illustrate the influence of the above-mentioned errors and the method of compensation for the dislocation of bearing contact. Based on the derived mathematical model, an automatic mesh generating computer program—AMG has been developed to define the geometry of the gears and to divide the gear tooth into elements as well as to generate nodal points automatically. The results of T.C.A. provide the locations and directions of the applied loadings for the finite element method (F.E.M.) stress analysis.


2013 ◽  
Vol 753-755 ◽  
pp. 1723-1726
Author(s):  
Zhi Min Fan ◽  
Zhao Qiang Zhang

Double involute gear drive was a new type of gear drive, which had high bending strength, small vibration and low noise. In this paper, the lubrication characteristics of the new type of gear had been studied, the model of elastohydrodynamic lubrication had been simplified and analyzed by geometric, and the mathematical model used for numerical analysis of elastohydrodynamic lubrication had been established.


Author(s):  
Yuchuan Zhu ◽  
Chang Liu ◽  
Yunze Song ◽  
Long Chen ◽  
Yulei Jiang ◽  
...  

In this paper, an electro-hydrostatic actuator driven by dual axial-mounted magnetostrictive material rods-based pumps (MMPs) with a new type of active rectification valve is designed in the current study. Based on flow distribution of the active rectification valve and driving energy provided by two MMPs, the actuator can output continuous and bidirectional displacement. By establishing a mathematical model of the actuating system, using simulation techniques, the change rule of hydraulic cylinder’s motion state caused by different driving signals are studied and analyzed. Test equipment platform is constructed in the laboratory to test the output characteristics and confirm the feasibility of the new concept. The experimental results indicate that the maximum flow rate can reach approximately 2.7 L·min−1, while the operating frequency is 180 Hz.


2021 ◽  
Vol 54 ◽  
pp. 699-711
Author(s):  
Andrey Efimov ◽  
Oleg Polushkin ◽  
Sergey Kireev ◽  
Marina Korchagina

2019 ◽  
Vol 106 (5-6) ◽  
pp. 2227-2241 ◽  
Author(s):  
Patrik Fager ◽  
Martina Calzavara ◽  
Fabio Sgarbossa

AbstractKitting – meaning to supply assembly with components in presorted kits – is widely seen as beneficial for assembly quality and efficiency when there is a multitude of component variants. However, the process by which kits are prepared – the kit preparation – is labour-intensive, and kit errors are problematic at assembly processes. The use of robotics to support kit preparation has received some attention by researchers, but literature is lacking with respect to how collaborative robots – cobots – can support kit preparation activities. The purpose of this paper is to identify the potential of a cobot to support time-efficient batch preparation of kits. To address the purpose, the paper presents a mathematical model for estimation of the cycle time associated with cobot-supported kit preparation. The model is applied in a numerical example with experimental data from laboratory experiments, and cobot-supported kit preparation is compared with manual kit preparation. The findings suggest that cobot-supported kit preparation is beneficial with diverse kits and smaller components quantities per SKU (Stock Keeping Unit) and provides less variability of the outcome, when compared to manual kit preparation. The paper reveals several insights about cobot-supported kit preparation that can be valuable for both academics and practitioners. The model developed can be used by practitioners to assess the potential of cobots to support kit-batch preparation in association with assembly, spare parts, repair and maintenance, or business to business industry.


2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


Robotica ◽  
2005 ◽  
Vol 24 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Hyeung-Sik Choi ◽  
Yong-Heon Park

We developed a new type of a human-sized BWR (biped walking robot) driven by the closed-chain type of a joint actuator. Each leg of the BWR is composed of three pitch joints and one roll joint. In all, a 12 degree-of-freedom robot, including four arm joints, was developed. The BWR was designed to walk autonomously; it is actuated by small 90W DC motors/drivers and is has DC batteries and controllers. A new type of the joint actuator for the BWR is composed of the four-bar-link mechanism driven by a ball screw which has high strength and high gear ratio despite its light weight.In this paper, analyses on the four-bar-link mechanism applied to the joint actuator and on the structure of the BWR are presented. Through walking experiments of the BWR, the superior trajectory-tracking ability of the proposed joint actuator is validated.


Author(s):  
T-S Lai

This article presents a mathematical model and geometric design algorithm for a new type of roller drive. The pinion has conical teeth in two circular arrays instead of one. This work is based on coordinate transformation and envelope theory, from which the equation of meshing of the cycloid drive is derived. The pinion profiles are the equidistant curves of the epicycloid profiles except the contour of the pinion conical tooth holes. Although there are twice as many pinion teeth as conventional rollers, their speed ratios are identical. This approach can design roller drives in which the pinion has two circular arrays of conical and cylindrical rollers. On the basis of these results, the corresponding solid modelling is constructed by CAD. Four examples are presented to demonstrate the feasibility of this approach. These examples can be a useful reference as a design case for other tooth profiles.


Sign in / Sign up

Export Citation Format

Share Document