Development of a single-shot linear actuator for a deep-sea sampling valve

Author(s):  
S-J Wu ◽  
C-J Yang ◽  
Y-Q Xie ◽  
L Yang ◽  
Y Chen

In this article, a new kind of linear actuator for the deep-sea sampling valve has been described. Based on the working principle of the triggering ring, the actuator employs a preloaded spring to generate an output force and linear movement. The actuator is designed to be used 4000 m underwater and can produce a force of 510 N at the maximal output displacement of 3.5 mm, which can be easily modified by changing the preloaded spring and spring seats. The actuator has been successfully tested to actuate the sampling valve at an ambient pressure of 40 MPa.

2005 ◽  
Vol 475-479 ◽  
pp. 2089-2094
Author(s):  
Hui Bin Xu ◽  
Tian Li Zhang ◽  
Cheng Bao Jiang ◽  
Hu Zhang

TbDyFe is a rare earth-iron magnetostrictive alloy with “giant” magnetostrain, good magnetomechanical coupling factor and fast response. Giant magnetostrictive actuators (GMAs) are designed and fabricated with home-made TbDyFe rods. Their magnetostrain properties under varied operation are tested. The static output displacement up to 100μm and output force up to 1500N were obtained. The dynamic displacement increases with amplitude under fixed frequency and decreases with frequency under fixed amplitude generally. The maximum dynamic output displacement of 146µm was obtained at natural frequency around 5Hz. Active vibration control employing GMA was implemented in the flexible structure. The excellent damping effect, 20-30 dB under the frequency range from 10Hz to 100Hz was obtained. The dynamic phase delay of GMA has been analyzed. A novel improved FSLMS algorithm is proposed to achieve a better control performance.


2020 ◽  
Author(s):  
Alberto Scoma

AbstractMicrobial preference for elevated hydrostatic pressure (HP) is a recognized key feature of environmental and industrial processes. HP effects on macromolecules and, consequently, cell functionality has been accurately described in the last decades. While there is little debate about the importance of HP in shaping microbial life, a systematic definition of microbial preference for increased HP is missing. The lack of a consensus about ‘true’ piezophiles, and ‘low’ or ‘high’ HP levels, has deleterious repercussions on microbiology and biotechnology. As certain levels are considered ‘low’ they are not applied to assess microbial activity. Most microorganisms collected in deep waters or sediments have not been tested (nor isolated) using the corresponding HP at which they were captured. Microbial response to HP is notoriously dependent on other environmental parameters, most notably temperature, but also on availability of nutrients, growth substrate, pH and salinity. This implies that countless isolates retrieved from ambient pressure conditions may very well require increased HP to grow optimally, as already demonstrated in both Archaea and Bacteria.In the present study, I collected the data from described piezophilic isolates and used the fundamental correlation existing between HP and temperature, as first suggested in seminal works by Yayanos, to update the definition of piezophiles. Thanks to the numerous new piezophilic isolates available since such seminal studies, the present analysis brings forward updated definitions which concern 1) the actual beginning of the piezosphere, the area in the deep sea where piezophiles thrive; 2) the HP thresholds which should be considered low, medium and high HP, and their implications for experimental design in Microbiology; and 3) the nature of obligate piezophiles and their location in the deep sea.


2020 ◽  
Vol 31 (5) ◽  
pp. 788-798
Author(s):  
Lingyun Wang ◽  
Xiang Huang ◽  
Siying Lin ◽  
Zhenxiang Bu ◽  
Hang Jin ◽  
...  

This article introduced a piezostack-driven jetting dispenser for a microelectronic packaging process. The dispenser had a compact displacement amplification module using two piezostack actuators for achieving compact design and maintaining high jetting performance and improving internal stress on the piezostack actuators. In this article, a working principle of a jetting dispenser configuration was introduced and was followed by the presentation of a displacement amplification mechanism using a cylindrical pivot. The dimensions of the amplification mechanism were determined based on a theoretical calculation of the system and the finite element analysis results. The internal stress of the piezostack and the output displacement of the dispenser were investigated at different operational frequencies. The experimental system with the jetting dispenser was manufactured, and the system performance was verified experimentally. For evaluating the performance, a mixed glycerol/ethanol was used for the dispensing fluid. The jetting system in this study achieved an ideal jetting performance at a jetting frequency of 350 Hz and a droplet diameter of 0.42 mm.


Author(s):  
Fei Yang ◽  
Jian Wang ◽  
Miaoling Han ◽  
Yifan Lu ◽  
Honghao Yue ◽  
...  

Abstract The traditional actuation systems such as combustion engines, electro motors, hydraulic and pneumatic machines, have several drawbacks: large volume and weight, huge energy consumption and high cost. To overcome these problems, this paper presents a novel large-stroke linear actuator actuated by shape memory alloy (SMA) wires. Multiple SMA wires are distributed in the space three-dimensionally and connected in series to achieve a larger stroke of the actuator. The tandem structure makes the SMA actuator easy to integrate into a narrow available space with dimension constraints. A theoretical model for bias element selection is developed through analysis of the driving paths. A prototype of the proposed SMA actuator is fabricated and corresponding experiments are conducted to verify the functions and performances. The critical working performances of the SMA actuator such as the output displacement, heating electric current, actuation time and reset time are obtained and investigated. The results prove that the proposed SMA actuator can output an ideal driving stroke and enough actuation force in confined space. This research provides design ideas for the large-stroke SMA actuator in more application fields.


Author(s):  
Qiyan Tian ◽  
Qifeng Zhang ◽  
Yanzhuang Chen ◽  
Liangqing Huo ◽  
Shuo Li ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Xiaodong Chen ◽  
Zilong Deng ◽  
Siya Hu ◽  
Jinhai Gao ◽  
Xingjun Gao

The existing symmetrical microgrippers have larger output displacements compared with the asymmetrical counterparts. However, the two jaws of a symmetrical microgripper are less unlikely to offer the same forces on the two sides of a grasped micro-object due to the manufacture and assembly errors. Therefore, this paper proposes a new asymmetric microgripper to obtain stable output force of the gripper. Compared with symmetrical microgrippers, asymmetrical microgrippers usually have smaller output displacements. In order to increase the output displacement, a compliant mechanism with four stage amplification is employed to design the asymmetric microgripper. Consequently, the proposed asymmetrical microgripper possesses the advantages of both the stable output force of the gripper and large displacement amplification. To begin with, the mechanical model of the microgripper is established in this paper. The relationship between the driving force and the output displacement of the microgripper is then derived, followed by the static characteristics’ analysis of the microgripper. Furthermore, finite element analysis (FEA) of the microgripper is also performed, and the mechanical structure of the microgripper is optimized based on the FEA simulations. Lastly, experimental tests are carried out, with a 5.28% difference from the FEA results and an 8.8% difference from the theoretical results. The results from theoretical calculation, FEA simulations, and experimental tests verify that the displacement amplification ratio and the maximum gripping displacement of the microgripper are up to 31.6 and 632 μm, respectively.


2020 ◽  
Vol 96 (9) ◽  
Author(s):  
Josefien Van Landuyt ◽  
Lorenzo Cimmino ◽  
Charles Dumolin ◽  
Ioanna Chatzigiannidou ◽  
Felix Taveirne ◽  
...  

ABSTRACT Deep-sea environments can become contaminated with petroleum hydrocarbons. The effects of hydrostatic pressure (HP) in the deep sea on microbial oil degradation are poorly understood. Here, we performed long-term enrichments (100 days) from a natural cold seep while providing optimal conditions to sustain high hydrocarbon degradation rates. Through enrichments performed at increased HP and ambient pressure (AP) and by using control enrichments with marine broth, we demonstrated that both pressure and carbon source can have a big impact on the community structure. In contrast to previous studies, hydrocarbonoclastic operational taxonomic units (OTUs) remained dominant at both AP and increased HP, suggesting piezotolerance of these OTUs over the tested pressure range. Twenty-three isolates were obtained after isolation and dereplication. After recultivation at increased HP, an Alcanivorax sp. showed promising piezotolerance in axenic culture. Furthermore, preliminary co-cultivation tests indicated synergistic growth between some isolates, which shows promise for future synthetic community construction. Overall, more insights into the effect of increased HP on oil-degrading communities were obtained as well as several interesting isolates, e.g. a piezotolerant hydrocarbonoclastic bacterium for future deep-sea bioaugmentation investigation.


2008 ◽  
Vol 8 (11) ◽  
pp. 5696-5701 ◽  
Author(s):  
Yong Woo Kim ◽  
Soo Chang Choi ◽  
Jeong Woo Park ◽  
Yoong Ho Jung ◽  
Deug Woo Lee

Currently, piezoelectric actuators which have attractive features such as high output force, high positioning resolution, high stiffness and quick response have been used in many ultra precision stages. But their positioning ranges are very small. This very limited displacement severely restricts the actuator's immediate implementation for long-range positioning. This paper shows a variable speed inchworm type stage with hinge structures as lever mechanism for nanometer resolution with large dynamic range and studies on characteristics of it. The inchworm stage has hinge structure levers which can shift their pivot position. And it can amplify/reduce output displacement using mechanical advantage with a lever. Especially we suggest guide-line of design according this work that was performed using different materials of stages (Aluminium and Stainless Steel). As the results of simulations, the larger lever ratio is, the smaller stiffness of lever portion is. As the results of experiments, when we input voltage into the inchworm stage, output displacement of each lever is different according to material. Hysteresis of stage could also present that grow according as lever rate rises and stiffness of material. In the case of feeding speed, Aluminium with less hardness showed excellent responsiveness, hence excellent feed performance results.


Sign in / Sign up

Export Citation Format

Share Document