Estimation of cycle-resolved in-cylinder pressure and air-fuel ratio using spark plug ionization current sensing

2001 ◽  
Vol 2 (4) ◽  
pp. 263-276 ◽  
Author(s):  
B Lee ◽  
Y G Guezennec ◽  
G Rizzoni

In recent years, several new sensor technologies have been developed and implemented within automotive industries due to the increasing requirements for improved engine performance and emission reduction. It requires detailed and specified knowledge of the combustion process inside the engine cylinder along with a sophisticated technique in engine diagnostics and control. During the last few years, the ionization current signal detection has been the emerging technology in the new sensor developments, in which the spark plug is used as a combustion probe, to improve the performance and emissions of an automobile engine. In this paper, a novel methodology will be presented which allows the cycle-resolved as well as the mean-value estimation of the air-fuel ratio and in-cylinder pressure based on the ionization current signal measurements. The implementation details of this methodology as well as extensive results will be presented for a wide range of air-fuel ratios. The main advantage of this new approach to process the ionization signal is its strong potential for real-time estimation of the air-fuel ratio and combustion diagnostics of individual cylinders and engine cycles. All the complex physics during the actual events (combustion process, ion generation, engine dynamics, etc.) are automatically self-extracted by this technique from acquired data in an initial off-line mapping phase. Once this has been performed, the air-fuel ratio and in-cylinder pressure can easily be estimated for each individual cylinder and combustion event in real-time with few computational requirements. Hence, this methodology has a high potential for the real-time combustion diagnostics and engine control based on the air-fuel ratio and in-cylinder pressure, while eliminating the requirements for installing expensive air-fuel ratio and in-cylinder pressure sensors. The results indicate that estimation of the cycle-resolved air-fuel ratio and in-cylinder pressure is reasonably accurate and robust, despite the inherently noisy character of the ionization signals, with estimation errors typically in the order of 2 per cent or less, except for very fuel-rich conditions.

2017 ◽  
Vol 171 (4) ◽  
pp. 196-200
Author(s):  
Łukasz FIEDKIEWICZ ◽  
Ireneusz PIELECHA ◽  
Krzysztof WISŁOCKI

The running diagnostics of the combustion process in an internal combustion engine is essential for increasing its efficiency and to improving its performance indicators. The modern diagnostics of this process no longer concerns only measurements of fast-changing thermodynamic variables, but also measurements of other parameters allowing for its evaluation. The use of electrical or optical methods in diagnostics enables the evaluation of local process parameters, such as occurrence of the flame and its temperature distribution. Actually, there are some new methods under investigation which are proposed for this kind of diagnostic. This article focuses on demonstrating the potential for using an electric signal from the gas ionization to estimate the maximum combustion pressure in a cylinder of an SI engine. This is a comparative analysis of the gas ionization current signal in the cylinder and the fast-changing pressure at fixed operating points of a 4-stroke natural gas powered engine. The study was carried out on a one-cylinder 4-stroke SI engine equipped with a cylinder pressure recording system and monitoring of the cylinder ionization current using appropriate measuring systems. The influence of engine operating conditions on the ability to determine cylinder pressure based on the ionization current signal was analyzed. This impact assessment was analyzed statistically and a strong correlation was found between the analyzed signals. The obtained results point in the potential direction of development of this type of measuring system.


2020 ◽  
pp. 146808742097289
Author(s):  
Maximilian Wick ◽  
Denghao Zhu ◽  
Jun Deng ◽  
Liguang Li ◽  
Jakob Andert

Homogenous charge compression ignition (HCCI) combustion is a low temperature combustion process which combines high combustion efficiency with ultra-low [Formula: see text] raw emissions. Steep increases of the in-cylinder pressure and unstable combustion sequences at the limits of the operating range can damage the engine and limit the use of HCCI to part load operation. This can be done using closed loop combustion control based on combustion parameters like the indicated mean effective pressure and the combustion phasing. Since in-cylinder pressure sensors are expensive components and therefore not suitable for series application, ion current sensors can be used as an additional source of information about the combustion. Combustion analysis using methods similar to those used in pressure based measurements can be implemented using an online analysis of the ion current signal. In this study, the ion current sensor will be examined for its suitability for combustion control under HCCI conditions with lean air/fuel ratios and high compression ratios. Research has found that the ion current signal is strongly depended on the boundary conditions. Especially the air/fuel ratio which plays an important role for signal strength during the combustion process. When using valve timings with negative valve overlap in combination with a fuel pre-injection, a further peak of the ion current signal close to the gas exchange top dead center can be found in addition to the one during combustion. At the same time, it is hard to extract information from the cylinder pressure signal during NVO. Under lean conditions this peak even exceeds the signal during combustion. This study analyzes the ion current signal during NVO and its potential to be used for future combustion control concepts. The ion current signal shows potential to stabilize HCCI combustion at high loads. However, the prediction of late combustion cycles is still challenging.


Author(s):  
Mirko Baratta ◽  
Stefano d’Ambrosio ◽  
Daniela Misul ◽  
Ezio Spessa

An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter CNG (compressed natural gas) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure and temperature at different locations on the engine intake and exhaust systems as well as ‘engine-out’ pollutant emissions have been measured. The signals correlated to the engine operation have been acquired by means of a National Instruments PXI-DAQ system and a home developed software. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a CAD procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads and relative air-fuel ratios (up to the lean operation). For stoichiometric operation, the addition of hydrogen to CNG has produced a bsfc reduction ranging between 2 to 7% and a bsTHC decrease up to the 40%. These benefits have appeared to be even higher for lean mixtures. Moreover, hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. As a matter of fact, hydrogen addition has generally resulted into extended operation up to RAFR = 1.8. Still, a discrepancy in the abovementioned conclusions was observed depending on the engine cylinder considered.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Dennis Vollberg ◽  
Dennis Wachter ◽  
Thomas Kuberczyk ◽  
Günter Schultes

Abstract. Different sensor concepts for time-resolved cylinder pressure monitoring of combustion engines are realized and evaluated in this paper. We distinguish a non-intrusive form of measurement outside the cylinder, performed by means of a force compression rod from intrusive, real in-cylinder measurement by means of pressure membrane sensors being exposed to the hot combustion process. The force compression rod has the shape of a sine wave with thinner zones equipped with highly sensitive foil strain gauges that experience a relatively moderate temperature level of 120 ∘C. The sensor rod delivers a relative pressure value that may be influenced by neighbour cylinders due to mechanical coupling. For the intrusive sensor type, two different materials for the membrane-type sensor element were simulated and tested, one based on the ceramic zirconia and the other based on stainless steel. Due to the higher thermal conductivity of steel, the element experiences only 200 ∘C while the zirconia element reaches 300 ∘C. Metallic chromium thin films with high strain sensitivity (gauge factor of 15) and high-temperature capability were deposited on the membranes and subsequently structured to a Wheatstone bridge. The pressure evolution can be measured with both types in full detail, comparable to the signals of test bench cylinder pressure sensors. For the preferential steel-based sensor type, a reliable laser-welded electrical connection between the thin films on the membrane and a copper wire was developed. The in-cylinder pressure sensors were tested both on a diesel test bench and on a gas-fired engine. On the latter, an endurance test with 20 million cycles was passed. Reliable cylinder pressure sensors with a minimum of internal components are thus provided. The signals will be processed inside the sensor housing to provide analysis and aggregated data, i.e. mass fraction burned (MFB50) and other parameters as an output to allow for smart combustion control.


Author(s):  
Ponti Fabrizio ◽  
Ravaglioli Vittorio ◽  
Cavina Nicolò ◽  
De Cesare Matteo

The increasing request for pollutant emissions reduction spawned a great deal of research in the field of combustion control and monitoring. As a matter of fact, newly developed low temperature combustion strategies for diesel engines allow obtaining a significant reduction both in particulate matter and NOx emissions, combining the use of high EGR rates with a proper injection strategy. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Many works demonstrate that a closed-loop combustion control strategy can be based on real-time analysis of in-cylinder pressure trace that provides important information about the combustion process, such as start of combustion, center of combustion and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost. This paper presents a newly developed approach that allows extracting information about combustion effectiveness through the analysis of engine vibrations. In particular, the developed methodology can be used to obtain an accurate estimation of the indicated quantities of interest combining the information provided by engine speed fluctuations measurement and by the signals coming from acceleration transducers mounted on the engine. This paper also reports the results obtained applying the whole methodology to a light-duty turbocharged common rail diesel engine.


Author(s):  
Jaekeun Park ◽  
Jaeou Chae

Abstract In-cylinder pressure of an internal combustion engine is considered to be a major source of information about combustion process. It is a generally accepted method to obtain an in-cylinder pressure signal using a pressure sensor (transducer). A different method of approach is presented in this study. The information about the in-cylinder pressure can be obtained by measuring breakdown voltage across the spark-plug gap. The density of gas inside the combustion chamber effect on the breakdown voltage of the spark plug, which is derived by the application of a high bias voltage (30kV) to the sparkplug gap continuously. The correlation between maximum breakdown voltage position and peak pressure position is established by this principle. So it is possible to detect the peak pressure position by measuring the breakdown voltage of the spark plug. The analyzing method of the breakdown voltage signal is also presented.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1831-1834
Author(s):  
Chang Qing Song ◽  
Jun Li ◽  
Da Wei Qu

The spark plug ion current signal carries abundant information about the engine combustion process. Real-time acquisition of the spark plug ion current signal can effectively extract the characteristic parameters, then enhance the power, fuel economy and emissions of the engine. The paper analyzed the influence factors of ion current, designed an acquisition and analysis system of spark plug ion current signal, and mainly studied the influence of spark plug gap and bias voltage on ion current signal in a six-cylinder four-stroke gas engine. The results show that the bias voltage and the spark plug gap have a great impact on the spark plug ion current signal. The ion current signal intensity is directly proportional to the bias voltage applied cross the spark plug, and inversely proportional to the spark plug gap. Results also indicates that the ion current is directly proportional to the mobility and concentration of charged particles in burned gas plasma.


Author(s):  
Enrico Corti ◽  
Claudio Forte

Future emission regulations could force manufacturers to install in-cylinder pressure sensors on production engines. The availability of such a signal opens a new scenario in terms of combustion control: many settings that previously were optimized off-line, can now be monitored and calibrated in realtime. One of the most effective factors influencing performance and efficiency is the combustion phasing: in gasoline engines Electronic Control Units (ECU) manage the Spark Advance (SA) in order to set the optimal combustion phase. SA optimal values are usually determined by means of calibration procedures carried out on the test bench by changing the ignition angle while monitoring Brake and Indicated Mean Effective Pressure (BMEP, IMEP) and Brake Specific Fuel Consumption (BSFC). The optimization process relates BMEP, IMEP and BSFC mean values with the control setting (SA). However, the effect of SA on combustion is not deterministic, due to the cycle-to-cycle variation: the analysis of mean values requires many engine cycles to be significant of the performance obtained with the given control setting. This paper presents a novel approach to SA optimization, with the objective of improving the performance analysis robustness, while reducing the test time. The approach can be either used in the calibration phase or in on-board applications, if the in-cylinder pressure signal is available: this would allow maintaining the optimization active throughout the entire engine life. The methodology is based on the observation that, for a given running condition, IMEP can be considered a function of a single combustion parameter, represented by the 50% Mass Fraction Burned (50%MFB). Due to cycle-to-cycle variation, many different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA, but these values are related by means of a unique relationship. The distribution on the plane IMEP-MFB50 forms a parabola, therefore the optimization could be carried out by choosing SA values maintaining the scatter around the vertex. Unfortunately the distribution shape is slightly influenced by heat losses (i.e., by SA): this effect must be taken into account in order to avoid over-advanced calibrations. SA is then controlled by means of a PID (Proportional Integer Derivative) controller, fed by an error that is defined based on the previous considerations: a contribution is related to the MFB50-IMEP distribution, and a second contribution is related to the net Cumulative Heat Release (CHRNET)-IMEP distribution. The latter is able to take into account for heat losses. Firstly, the methodology has been tested on in-cylinder pressure data, collected from different SI engines; then, it has been implemented in real-time, by means of a programmable combustion analyzer: the system performs a cycle-to-cycle combustion analysis, evaluating the combustion parameters necessary to calculate the target SA, which is then actuated by the ECU. The approach proved to be efficient, reducing the number of engine cycles necessary for the calibration to less than 1000 per operating condition.


1992 ◽  
Vol 114 (3) ◽  
pp. 475-479 ◽  
Author(s):  
R. C. Meyer ◽  
D. P. Meyers ◽  
S. R. King ◽  
W. E. Liss

Combustion experiments were conducted on a spark-ignited single-cylinder engine operating on natural gas. A special open chamber cylinder head was designed to accept as many as four spark plugs. Data were obtained to investigate the effects of spark plug quantity and location on NOx, HC, CO emissions, brake and indicated thermal efficiency, MBT timing, combustion duration, ignition delay, peak cylinder pressure, peak cylinder temperature, and heat release over a wide range of equivalence ratios.


Sign in / Sign up

Export Citation Format

Share Document