Engine thermomanagement with electrical components for fuel consumption reduction

2002 ◽  
Vol 3 (3) ◽  
pp. 157-170 ◽  
Author(s):  
E Cortona ◽  
C. H. Onder ◽  
L Guzzella

This paper proposes a solution for advanced temperature control of the relevant temperature of a combustion engine. It analyses the possibility of reducing vehicle fuel consumption by improving engine thermomanagement. In conventional applications, combustion engine cooling systems are designed to guarantee sufficient heat removal at full load. The cooling pump is belt-driven by the combustion engine crankshaft, resulting in a direct coupling of engine and cooling pump speeds. It is dimensioned such that it can guarantee adequate performance over the full engine speed range. This causes an excessive flow of cooling fluid at part-load conditions and at engine cold-start. This negatively affects the engine efficiency and, as a consequence, the overall fuel consumption. Moreover, state-of-the-art cooling systems allow the control of the coolant temperature only by expansion thermostats (solid-to-liquid phase wax actuators). The resulting coolant temperature does not permit engine efficiency to be optimized. In this paper, active control of the coolant flow as well as of the coolant temperature has been realized using an electrical cooling pump and an electrically driven valve which controls the flow distribution between the radiator and its bypass. For this purpose, a control-oriented model of the whole cooling system has been derived. Model-based feedforward and feedback controls of coolant temperature and flow have been designed and tested. With the additional actuators and the model-based control scheme, a good performance in terms of fast heat-up and small temperature overshoot has been achieved. The improvements in fuel consumption obtained with the proposed configuration have been verified on a dynamic testbench. Both engine cold-start under stationary engine operation and the European driving cycle MVEG-A with engine cold-start were tested. The fuel consumption reductions achieved during these tests vary between 2.8 and 4.5 per cent, depending on the engine operating conditions. Compared to vehicle mass reduction or internal engine improvements, engine thermomanagement is a simple, flexible and cost efficient solution for improving system performance, i.e. fuel consumption.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1148 ◽  
Author(s):  
Teresa Castiglione ◽  
Pietropaolo Morrone ◽  
Luigi Falbo ◽  
Diego Perrone ◽  
Sergio Bova

Improvements in internal combustion engine efficiency can be achieved with proper thermal management. In this work, a simulation tool for the preliminary analysis of the engine cooling control is developed and a model-based controller, which enforces the coolant flow rate by means of an electrically driven pump is presented. The controller optimizes the coolant flow rate under each engine operating condition to guarantee that the engine temperatures and the coolant boiling levels are kept inside prescribed constraints, which guarantees efficient and safe engine operation. The methodology is validated at the experimental test rig. Several control strategies are analyzed during a standard homologation cycle and a comparison of the proposed methodology and the adoption of the standard belt-driven pump is provided. The results show that, according to the control strategy requirements, a fuel consumption reduction of up to about 8% with respect to the traditional cooling system can be achieved over a whole driving cycle. This proves that the proposed methodology is a useful tool for appropriately cooling the engine under the whole range of possible operating conditions.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110112
Author(s):  
Hongyu Mu ◽  
Yinyan Wang ◽  
Hong Teng ◽  
Yan Jin ◽  
Xingtian Zhao ◽  
...  

To realize eco-models based on (where 3R represents reducing, reusing, and recycling), both researchers and automobile development departments use controllable components to reduce vehicle fuel consumption and emissions. In this context, this paper presents the design of a double-ball motor control valve (DB-MCV). When compared with use of a traditional thermostat, use of the proposed valve in a Worldwide Harmonized Light Vehicles Test Cycle (WLTC) allows the coolant temperature to be controlled accurately as per the vehicle operating conditions, with control accuracy of ±1°C. Using this approach, the engine pre-heating time is reduced by 61 s, the total hydrocarbon (THC)) emission is reduced by 6.79%, the CO emission is reduced by 7.18%, and NOX emission is reduced by 4.84%. Under the same vehicle and working conditions, the engine fuel consumption is reduced by 2.31% on average. Under the cabin heating condition, the cabin temperature can be increased by 4.3°C, which improves the thermal comfort of the driver. When the vehicle is stopped after running at high speed and the engine is idling, the coolant temperature in the engine decreases rapidly, which reduces the risk of a hot dip occurring in the engine.


2021 ◽  
Author(s):  
Michał Gęca ◽  
Gojmir Radica

This paper examines the effect of an external preheating system for an internal combustion engine on fuel consumption, CO2 emissions, and cabin temperature of a Euro4 vehicle. A 1 kW electric system powered by 220 V was installed in series in the cooling system of a vehicle with a compression-ignition engine of 2.5 dm3 capacity. The tests were carried out in simulated urban driving conditions (distance of 4.2 km), extra-urban driving conditions (distance of 17 km), and during idling at cold-start temperatures ranging from -10 oC to 2 oC. Preheating the engine under simulated city conditions reduces fuel consumption by 2.64 dm3/100 km and increases the supply air temperature immediately after engine start-up. Due to the preheater being powered from an external power grid, the cost per trip and total CO2 emissions are increased. Assuming renewable energy sources, CO2 emissions would be reduced the most for the stationary tests after engine preheating. In contrast, emissions would be reduced the least for extra-urban driving.


Author(s):  
Seyyed Khandani ◽  
Himanshu Pokharna ◽  
Sridhar Machiroutu ◽  
Eric DiStefano

Remote heat pipe based heat exchanger cooling systems are becoming increasingly popular in cooling of notebook computers. In such cooling systems, one or more heat pipes transfer the heat from the more populated area to a location with sufficient space allowing the use of a heat exchanger for removal of the heat from the system. In analsysis of such systems, the temperature drop in the condenser section of the heat pipe is assumed negligible due to the nature of the condensation process. However, in testing of various systems, non linear longitudinal temperature drops in the heat pipe in the range of 2 to 15 °C, for different processor power and heat exchanger airflow, have been measured. Such temperature drops could cause higher condenser thermal resistance and result in lower overall heat exchanger performance. In fact the application of the conventional method of estimating the thermal performance, which does not consider such a nonlinear temperature variations, results in inaccurate design of the cooling system and requires unnecessarily higher safety factors to compensate for this inaccuracy. To address the problem, this paper offers a new analytical approach for modeling the heat pipe based heat exchanger performance under various operating conditions. The method can be used with any arbitrary condenser temperature variations. The results of the model show significant increase in heat exchanger thermal resistance when considering a non linear condenser temperature drop. The experimental data also verifies the result of the model with sufficient accuracy and therefore validates the application of this model in estimating the performance of these systems.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


2021 ◽  
Vol 1 (3) ◽  
pp. 53-61
Author(s):  
S.G. Dragomirov ◽  
◽  
P.Ig. Eydel ◽  
A.Yu. Gamayunov ◽  
M.S. Dragomirov ◽  
...  

The article describes the results of a study of the physicochemical characteristics of solid particles of contaminants present in the coolant of automobile and tractor engines. The data on the fractional, physical and chemical composition of solid particles of contamination are given. It was established that the generalized reason for the appearance of contaminants of various nature in liquid cooling systems of engines is the physicochemical interaction of the coolant (antifreeze) with different elements and dissimilar materials of the cooling system. The use of absolutely pure coolant in the cooling systems of automobile and tractor engines is practically unrealistic, since there will always be operating conditions that contribute to the formation of contamination. A number of chemical elements (in an amount from 1 to 47% of each element) were found in the composition of solid particles of coolant contaminants: iron Fe, silicon Si, aluminum Al, lead Pb, tin Sn, zinc Zn, calcium Ca, magnesium Mg, copper Cu. In addition, at a level of less than 1.0% (wt.), Such chemical elements as potassium K, sodium Na, titanium Ti, phosphorus P, sulfur S, chromium Cr, molyb-denum Mo, chlorine Cl, iridium Ir, nickel Ni, manganese Mn, etc. were found. The most dangerous contaminants are particles of iron Fe and silicon Si, contained in the coolant in an amount of up to 47 and 37%, respectively, and possessing significant hardness and angularity. The abrasive proper-ties of Fe and Si particles create the danger of removing a thin oxide film on the inner surface of the walls of the cooling radiator channels, leading to their premature destruction. In this regard, it is concluded that high-performance engine coolant filters should be used in automobiles and tractors to remove these contaminants from the flow.


Author(s):  
J A Twiddle ◽  
N B Jones

This paper describes a fuzzy model-based diagnostic system and its application to the cooling system of a diesel engine. The aim is to develop generic cost-effective knowledge-based techniques for condition monitoring and fault diagnosis of engine systems. A number of fuzzy systems have been developed to model the cooling system components. Residuals are generated on line by comparison of measured data with model outputs. The residuals are then analysed on line and classified into a number of fuzzy classes symptomatic of potential system conditions. A fuzzy rule-based system is designed to infer a number of typical fault conditions from the estimated state of the valve and patterns in the residual classes. The ability to diagnose certain faults in the system depends on the state of the thermostatic valve. The diagnostic systems have been tested with data obtained by experimental simulation of a number of target fault conditions on a diesel generator set test bed. In five test cases for separate cooling system operating conditions, the diagnostic system's successful diagnosis rate ranged between 73 and 97.7 per cent of the test data.


Author(s):  
Mahdi Shahbakhti ◽  
Mohammad Reza Amini ◽  
Jimmy Li ◽  
Satoshi Asami ◽  
J. Karl Hedrick

Verification and validation (V&V) are essential stages in the design cycle of automotive controllers to remove the gap between the designed and implemented controller. In this paper, an early model-based methodology is proposed to reduce the V&V time and improve the robustness of the designed controllers. The application of the proposed methodology is demonstrated on a cold start emission control problem in a midsize passenger car. A nonlinear reduced order model-based controller based on singular perturbation approximation (SPA) is designed to reduce cold start hydrocarbon (HC) emissions from a spark ignition (SI) combustion engine. A model-based simulation platform is created to verify the controller robustness against sampling, quantization, and fixed-point arithmetic imprecision. In addition, the results from early model-based verification are used to identify and remove sources of errors causing propagation of numerical imprecision in the controller structure. Thus the structure of the controller is modified to avoid or to reduce the level of numerical noise in the controller design. The performance of the final modified controller is validated in real-time by testing the control algorithm on a real engine control unit. The validation results indicate the modified controller is 17–63% more robust to different implementation imprecision while it requires lower implementation cost. The proposed methodology from this paper is expected to reduce typical V&V efforts in the development of automotive controllers.


2019 ◽  
Vol 177 (2) ◽  
pp. 46-49
Author(s):  
Mateusz SZRAMOWIAT

The article presents currently applied construction solutions for currently used cooling systems for internal combustion engines. There were presented their defects and possible development directions were indicated. On this basis the concept of a cooling system which will enable the improvement of heat exchange in the internal combustion engine has been proposed.


Sign in / Sign up

Export Citation Format

Share Document