scholarly journals A Study of the Stability of a Plate-Like Load Towed beneath a Helicopter

1971 ◽  
Vol 13 (5) ◽  
pp. 330-343 ◽  
Author(s):  
D. F. Sheldon

Recent experience has shown that a plate-like load suspended beneath a helicopter moving in horizontal forward flight has unstable characteristics at both low and high forward speeds. These findings have prompted a theoretical analysis to determine the longitudinal and lateral dynamic stability of a suspended pallet. Only the longitudinal stability is considered here. Although it is strictly a non-linear problem, the usual assumptions have been made to obtain linearized equations of motion. The aerodynamic derivative data required for these equations have been obtained, where possible, for the appropriate ranges of Reynolds and Strouhal number by means of static and dynamic wind tunnel testing. The resulting stability equations (with full aerodynamic derivative information) have been set up and solved, on a digital computer, to give direct indication of a stable or unstable system for a combination of physical parameters. These results have indicated a longitudinal unstable mode for all practical forward speeds. Simultaneously the important stability derivatives were found for this instability and modifications were made subsequently in the suspension system to eliminate the instabilities in the longitudinal sense. Throughout this paper, all metric dimensions are given approximately.

1977 ◽  
Vol 14 (02) ◽  
pp. 265-275
Author(s):  
Carl A. Scragg

This paper presents a new method of experimentally determining the stability derivatives of a ship. Using a linearized set of the equations of motion which allows for the presence of a memory effect, the response of the ship to impulsive motions is examined. This new technique is compared with the traditional method of regular-motion tests and experimental results are presented for both methods.


1988 ◽  
Vol 55 (4) ◽  
pp. 895-898 ◽  
Author(s):  
D. J. Inman

A sufficient condition for the stability of conservative gyroscopic systems with negative definite stiffness is presented. The conditions for stability are stated in terms of the definiteness of certain combinations of the coefficient matrices of the equations of motion. These conditions yield design constraints in terms of the physical parameters of the system. An example is given to illustrate the correctness of the result, as well as to provide a comparison with the results of other researchers.


1992 ◽  
Vol 59 (4) ◽  
pp. 1000-1008 ◽  
Author(s):  
D. Seter ◽  
A. Rosen

A numerical model to investigate the stability of the vertical autorotation of a singlewinged samara is presented. This model is obtained after the method of small perturbations about an equilibrium state is applied on the nonlinear equations of motion of the samara. The aerodynamic stability derivatives of the wing are obtained by numerical differentiation. The model is used in order to study the influence of different parameters on the stability. Since the stability is highly dependent on the basic equilibrium state, the influence of the different parameters on the basic state is also presented and discussed. The theoretical model is validated by comparing its results with qualitative experimental results.


Author(s):  
Nai-Li Xu ◽  
Hang Xu

Based on Buongiorno's theory and Cauchy equations of motion, a model is developed to examine homogeneous–heterogeneous reactions in boundary layer flow of a nanofluid over a stretching sheet in which a uniform magnetic field is added perpendicular to the flow direction. We apply the shooting method and the fourth-order Runge–Kutta integration to obtain multiple solutions of nonlinear ordinary differential equations with various physical parameters. Results show that nanofluids play significant roles in the procedures of homogeneous and heterogeneous reactions, which may help maintain the stability of chemical reactions. In addition, the terms related to Maxwell fluid either have effect on stability of the system; furthermore, the increasing elastic and magnetic parameters delay the appearance of bifurcation points.


Author(s):  
Drew Goettler ◽  
Amit Savkar ◽  
Kevin Murphy ◽  
Zayd Chad Leseman

It has been shown in recent times that the use of structural vibrations is a viable approach in repairing stiction failed MEMS cantilever beams. It has also been observed that such a technique is sensitive to various parametric values associated with the de-sticking of these beams. In the current paper we present experimental results which characterize the ideal cantilever beam. An analytical model of stiction failed MEMS cantilever beams under electrostatic actuation is presented. Physical parameters such as stiffness, bending rigidity, damping, excitation voltage, etc. are incorporated in terms of Mathieu parameters to study the stability of the system. An experimental characterization of natural frequency, Young’s Modulus, and damping ratio, which form important components of the analysis, is presented. Accompanying these results is a description of the experimental set up used for finding these parameters. Experiments were performed at both atmospheric and vacuum pressures. An interferometric microscope mounted above the glass window of the vacuum chamber was used to determine the crack length of each beam and observe the profiles of the arrays of microcantilevers in-situ. A Laser Doppler Vibrometer was used for determination of characterization parameters. The microcantilevers were fabricated using the SUMMiT IV process of Sandia National Laboratories. Structural vibrations were induced by placing an alternating voltage on a cofabricated actuation pad located under the microcantilevers near their anchor point. Theoretical modeling shows the dependence of physical parameters that lead to stiction repair.


SIMULATION ◽  
1967 ◽  
Vol 9 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Arthur I. Rubin ◽  
Stanley Driban ◽  
Wayne W. Miessner

The steps necessary to derive the regression differential equations for a set of unknown parameters are presented. A simple straight-line algebraic regression problem is re viewed. A real problem, that of finding the aerodynamic stability derivatives for the lateral equations of motion of an airplane, is presented. Preliminary results, using real airplane transient time histories, are compared with simu lated transients obtained using wind-tunnel values for the stability derivatives.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2039
Author(s):  
Gamal A. E. Mostafa ◽  
Ahmed Bakheit ◽  
Najla AlMasoud ◽  
Haitham AlRabiah

The reactions of ketotifen fumarate (KT) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as π acceptors to form charge transfer (CT) complexes were evaluated in this study. Experimental and theoretical approaches, including density function theory (DFT), were used to obtain the comprehensive, reliable, and accurate structure elucidation of the developed CT complexes. The CT complexes (KT-DDQ and KT-TCNQ) were monitored at 485 and 843 nm, respectively, and the calibration curve ranged from 10 to 100 ppm for KT-DDQ and 2.5 to 40 ppm for KT-TCNQ. The spectrophotometric methods were validated for the determination of KT, and the stability of the CT complexes was assessed by studying the corresponding spectroscopic physical parameters. The molar ratio of KT:DDQ and KT:TCNQ was estimated at 1:1 using Job’s method, which was compatible with the results obtained using the Benesi–Hildebrand equation. Using these complexes, the quantitative determination of KT in its dosage form was successful.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Abdullah Al-Mamun ◽  
S. M. Arifuzzaman ◽  
Sk. Reza-E-Rabbi ◽  
Umme Sara Alam ◽  
Saiful Islam ◽  
...  

AbstractThe perspective of this paper is to characterize a Casson type of Non-Newtonian fluid flow through heat as well as mass conduction towards a stretching surface with thermophoresis and radiation absorption impacts in association with periodic hydromagnetic effect. Here heat absorption is also integrated with the heat absorbing parameter. A time dependent fundamental set of equations, i.e. momentum, energy and concentration have been established to discuss the fluid flow system. Explicit finite difference technique is occupied here by executing a procedure in Compaq Visual Fortran 6.6a to elucidate the mathematical model of liquid flow. The stability and convergence inspection has been accomplished. It has observed that the present work converged at, Pr ≥ 0.447 indicates the value of Prandtl number and Le ≥ 0.163 indicates the value of Lewis number. Impact of useful physical parameters has been illustrated graphically on various flow fields. It has inspected that the periodic magnetic field has helped to increase the interaction of the nanoparticles in the velocity field significantly. The field has been depicted in a vibrating form which is also done newly in this work. Subsequently, the Lorentz force has also represented a great impact in the updated visualization (streamlines and isotherms) of the flow field. The respective fields appeared with more wave for the larger values of magnetic parameter. These results help to visualize a theoretical idea of the effect of modern electromagnetic induction use in industry instead of traditional energy sources. Moreover, it has a great application in lung and prostate cancer therapy.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Bruno Conti ◽  
Barbara Bosio ◽  
Stephen John McPhail ◽  
Francesca Santoni ◽  
Davide Pumiglia ◽  
...  

Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) technology offers interesting opportunities in the panorama of a larger penetration of renewable and distributed power generation, namely high electrical efficiency at manageable scales for both remote and industrial applications. In order to optimize the performance and the operating conditions of such a pre-commercial technology, an effective synergy between experimentation and simulation is fundamental. For this purpose, starting from the SIMFC (SIMulation of Fuel Cells) code set-up and successfully validated for Molten Carbonate Fuel Cells, a new version of the code has been developed for IT-SOFCs. The new release of the code allows the calculation of the maps of the main electrical, chemical, and physical parameters on the cell plane of planar IT-SOFCs fed in co-flow. A semi-empirical kinetic formulation has been set-up, identifying the related parameters thanks to a devoted series of experiments, and integrated in SIMFC. Thanks to a multi-sampling innovative experimental apparatus the simultaneous measurement of temperature and gas composition on the cell plane was possible, so that a preliminary validation of the model on local values was carried out. A good agreement between experimental and simulated data was achieved in terms of cell voltages and local temperatures, but also, for the first time, in terms of local concentration on the cell plane, encouraging further developments. This numerical tool is proposed for a better interpretation of the phenomena occurring in IT-SOFCs and a consequential optimization of their performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


Sign in / Sign up

Export Citation Format

Share Document