Non-Newtonian Lubrication Theory for Rough Surfaces: Application to Rigid and Elastic Rollers

1982 ◽  
Vol 24 (3) ◽  
pp. 147-154 ◽  
Author(s):  
P. Sinha ◽  
J. B. Shukla ◽  
C. Singh ◽  
K. R. Prasad

To predict the consequences of the interaction of the lubricant rheology with surface roughness, the stochastic theory of lubrication for Newtonian fluid is modified to take into account the non-Newtonian behaviour of the lubricant, by considering the power law model. Generalized forms of the Reynolds equation for two types of roughness arrangements, viz., longitudinal and transverse, are derived. These equations are subsequently used to study the lubrication characteristics of infinitely long rough roller bearings, and two particular cases, namely pure rolling (rigid surfaces) and rolling with elastic deformation, are discussed.

2016 ◽  
Vol 33 (2) ◽  
Author(s):  
Santhana Krishnan Narayanan ◽  
A Chamkha ◽  
Sundarammal Kesavan

Purpose The purpose of this work is to carry our a study of the effect of surface roughness on squeeze film behavior between two transversely circular stepped plates with couple stress lubricant when the upper circular stepped plate has porous facing which approaches the lower plate with uniform velocity. Design/methodology/approach The modified Stochastic Reynolds equation is derived for Christensen Stochastic theory for the rough surfaces. Closed form solution of the Stochastic Reynolds equation is obtained in terms of Fourier-Bessel series. Findings It is found that the effect of couple stress fluid and surface roughness is more pronounced compared to classical case. Originality/value The problem is original that it consider a couple stress fluid in this type of applications.


2018 ◽  
Vol 34 (6) ◽  
pp. 3153-3156
Author(s):  
Fahime Hoseinzade ◽  
Hamid Reza Ghorbani

The purpose of this work was the study of the formation process of Newtonian drop in a continuous non-Newtonian fluid. This process was numerically studied by entering liquid into a submerged orifice in a cylindrical vessel. The simulations were carried out using SOLA-VOF method. In this code, the complete motion equations were predicted two dimensions and using finite difference method. In addition, power law model was used to simulate a non-Newtonian fluid. In this research, the effects of orifice diameter and Newtonian fluid flow rate were studied on the formation of the drop, size and its formation time.


10.30544/473 ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 57-69
Author(s):  
M. Hanief ◽  
M. S. Charoo

This work aims to model and investigate the effect of cutting speed, feed rate, depth of cut and the workpiece temperature on surface roughness and flank wear (responses) of Monel-400 during turning operation. It also aims to optimize the machining parameters of the above operation. A power-law model is developed for this purpose and is corroborated by comparing the results with the artificial neural network (ANN) model. Based on the coefficient of determination (R2), mean square error (MSE), and mean absolute percentage error (MAPE) the results of the power-law model are found to be in close agreement with that of ANN. Also, the proposed power law and ANN models for surface roughness and flank wear are in close agreement with the experiment results. For the power-law model R2, MSE, and MAPE were found to be 99.83%, 9.9×10-4, and 3.32×10-2, and that of ANN were found to be 99.91%, 5.4×10-4, and 5.96×10-2, respectively for surface roughness and flank wear. An error of 0.0642% (minimum) and 8.7346% (maximum) for surface roughness and 0.0261% (minimum) and 4.6073% (maximum) for flank wear were recorded between the observed and experimental results, respectively. In order to optimize the objective functions obtained from power-law models of the surface roughness and flank wear, GA (genetic algorithm) was used to determine the optimal values of the operating parameters and objective functions thereof. The optimal value of 2.1973 µm and 0.256 mm were found for surface roughness and flank wear, respectively.


Author(s):  
Boualem Chetti ◽  
Hamid Zouggar

In this work, a numerical study of the effect of elastic deformation on the static characteristics of a circular journal bearing operating with non-Newtonian fluids obeying to the power law model is presented. The modified Reynolds equation has been derived taking into consideration the effect of non-Newtonian behavior of the fluids. To obtain the pressure distribution, the Reynolds equation has been solved using finite difference technique with appropriate iterative technique incorporating Reynolds boundary conditions. The static performance characteristics for finite-width journal bearing in terms of the load-carrying capacity, the attitude angle, friction coefficient, and the side leakage have been studied for various values of the non-Newtonian power law index n and the elastic coefficient. The results show that the increase of the power law index produces a higher load-carrying capacity, a higher side leakage, a lower attitude angle, and a lower friction coefficient. From this study, it can be concluded that the elastic deformation has an important influence on the static characteristics of the journal bearing lubricated with a non-Newtonian fluid, and this influence is more significant for the journal bearing operating at larger values of the eccentricity ratio.


2014 ◽  
Vol 66 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Jun Sun ◽  
Xinlong Zhu ◽  
Liang Zhang ◽  
Xianyi Wang ◽  
Chunmei Wang ◽  
...  

Purpose – Current lubrication analyses of misaligned journal bearings were generally performed under some given preconditions. To make the lubrication analysis closer to the actual situation and usable to the journal bearing design, the purpose of this paper was to calculate the lubrication characteristics of misaligned journal bearings considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. Design/methodology/approach – The lubrication of bearings was analyzed using the average Reynolds equation. The deformation of the bearing surface under oil film pressure was calculated by a compliance matrix method. The compliance matrix was established by finite element analysis of the bearing housing. The viscosity-pressure and viscosity–temperature equations were used in the analysis. Findings – The oil viscosity-pressure relationship has a significant effect on the lubrication of misaligned journal bearings. The surface roughness will affect the lubrication of misaligned journal bearings when the eccentricity ratio and angle of journal misalignment are all large. The directional parameter of the surface has an obvious effect on the lubrication of misaligned journal bearings. The deformation of the bearing surface has a remarkable effect on the lubrication of misaligned journal bearings. Originality/value – The lubrication characteristics of misaligned journal bearings were calculated considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. The results of this paper are helpful to the design of the bearing.


2019 ◽  
Vol 20 (4) ◽  
pp. 402 ◽  
Author(s):  
Biao Li ◽  
Jun Sun ◽  
Shaoyu Zhu ◽  
Yangyang Fu ◽  
Xiaoyong Zhao ◽  
...  

Generally, the movement of journal along the direction of bearing axis under the combined action of various factors is neglected in the lubrication study of bearing, which is quite different from the actual working condition of bearing in the shaft-bearing system. In this paper, with a comprehensive consideration of the axial movement of journal, the surface topography of journal and bearing and the misalignment of journal, a new model about the hydrodynamic lubrication of misaligned journal bearing is established based on the average Reynolds equation. Considering the effect of the axial movement of misaligned journal, the lubrication characteristics parameters of rough journal bearing is presented and mainly discussed. The results show that the axial movement of misaligned journal has a distinct effect on the bearing lubrication characteristics. The influence of the axial movement of misaligned journal on the bearing lubrication characteristics is slightly reduced when considering the surface roughness.


Author(s):  
Mongkol Mongkolwongrojn ◽  
Khanittha Wongseedakaew ◽  
Francis E. Kennedy

This paper presents the analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with non-Newtonian fluids under oscillatory motion. The effects of transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using multi-grid multi-level method with full approximation technique. Film thickness and pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally. For an increase in the applied load on the cylinders, the minimum film thickness calculated numerically becomes smaller. The predicted film thickness is slightly higher than the film thickness obtained experimentally, owing to cavitation that occurred in the experiments. For both hard and soft EHL contacts, the minimum film thickness under oscillatory motion is very thin near the trailing edge of the contact, especially for stiffer surfaces. The surface roughness and power law index of the non-Newtonian lubricant both have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion.


2015 ◽  
Vol 764-765 ◽  
pp. 160-164
Author(s):  
Li Ming Chu ◽  
Hsiang Chen Hsu

The modified Reynolds equation for power-law fluid is derived from the viscous adsorption theory for thin film elastohydrodynamic lubrication (TFEHL) of circular contacts. The lubricating film between solid surfaces is modeled as three fixed layers, which are two adsorption layers on each surface and a middle layer. The differences between classical EHL and TFEHL with non-Newtonian lubricants are discussed. Results show that the TFEHL power law model can reasonably calculate the pressure distribution, the film thickness, and the velocity distribution. The thickness and viscosity of the adsorption layer and the flow index influence significantly the lubrication characteristics of the contact conjunction.


1969 ◽  
Vol 184 (1) ◽  
pp. 1013-1026 ◽  
Author(s):  
H. Christensen

This paper deals with hydrodynamic aspects of rough bearing surfaces. On the basis of stochastic theory two different forms of Reynolds-type equation corresponding to two different types of surface roughnesses are developed. It is shown that the mathematical form of these equations is similar but not identical to the form of the Reynolds equation governing the behaviour of smooth, deterministic bearing surfaces. To illustrate the functional effects of surface roughness the influence on the operating characteristics of a plane pad, no side leakage slider bearing is analysed. It is shown that surface roughness may considerably influence the operating characteristics of bearings and that the direction of the influence depends upon the type of roughness assumed. The effects are not, however, critically dependent upon the detailed form of the distribution function of the roughness heights.


Sign in / Sign up

Export Citation Format

Share Document