Radium in Engineering Practice

1933 ◽  
Vol 124 (1) ◽  
pp. 305-332
Author(s):  
V. E. Pullin

Considerable advances have recently been made in nondestructive testing, and a new transportable X-ray laboratory is illustrated in the paper to show that X-rays have achieved a definite, if limited, function in this field. The paper is mainly devoted to a discussion of the properties of radium as a radiographic agent to show how it compares in value with the older X-ray method. The disintegration theory of radioactive materials is outlined and the relative wavelengths of various components of the so-called electromagnetic spectrum, used roughly to indicate their penetrating power, are given. The method of preparing radon is described as it has the great advantage that its use would afford an approximation to a point source of radiation. When employing one of the radium salts, the radium must be removed an appreciable distance from the sensitized film to obtain good definition, thus increasing the exposure time. Careful directions are given for the safe handling and storage of the element. The exposure camera in use in the Research Department, Woolwich, is described and curves are given indicating safe working distances for operators. Many experimental refinements making for clear radiography are mentioned. In the case of X-rays the effect of scattered radiation militates seriously against good results, whereas in gamma-ray photography there is practically no such harmful effect. Hence heavy irregular specimens may be radiographed by radium in perhaps one exposure. Exposure curves for radium, based upon experimental data obtained in the author's laboratory, are given. Owing to the general employment of photographic intensifying screens to shorten exposures, it is not possible to rely on calculations based on the inverse square law. The uses of X-rays and radium are compared and the particular advantages of radium illustrated by a large number of radiographs. X-rays have overwhelming advantages in the examination of metallic structures up to a thickness of about 3 inches. Radium, on the other hand, may be employed in the investigation of metals up to 8 inches or more in thickness.

2014 ◽  
Vol 93 ◽  
pp. 524-529 ◽  
Author(s):  
David J. Lawrence ◽  
William C. Feldman ◽  
Robert E. Gold ◽  
John O. Goldsten ◽  
Ralph L. McNutt

1994 ◽  
Vol 159 ◽  
pp. 63-72 ◽  
Author(s):  
E. Churazov ◽  
M. Gilfanov ◽  
A. Finoguenov ◽  
R. Sunyaev ◽  
M. Chernyakova ◽  
...  

Brief review of AGNs observations in the X-ray / soft gamma-ray bands with the orbital observatory GRANAT is presented.For three well known bright objects (3C273, NGC4151 and Cen A) broad band (3 keV–few hundreds keV) spectra have been obtained. Imaging capabilities allowed accurate (several arcminutes) identification of these objects with sources of hard X-rays.The spectrum of NGC4151 above ≈ 50 keV was found to be much steeper than that in most of the previous observations, while in standard X-ray band the spectrum agrees with observed previously. The comparison of the observed spectra with that of the X-Ray Background (XRB) indicates that sources similar to NGC4151 could reproduce the shape of XRB spectrum in 3–60 keV band.Cen A was observed in the very low state during most of observations in 1990–1993, except for two observations in 1991. The variability of the hard X-ray flux has been detected on the time scales of several days.


1998 ◽  
Vol 179 ◽  
pp. 237-237 ◽  
Author(s):  
D. Leisawitz ◽  
S.W. Digel ◽  
S. Geitz

The Astrophysics Data Facility at NASA Goddard Space Flight Center supports the processing, management, and dissemination of data obtained by past, current, and future NASA and international astrophysics missions, and promotes the effective use of those data by the astrophysics community, educators, and the public. Our Multiwavelength Milky Way poster was printed for broad distribution. It depicts the Galaxy at radio, infrared, optical, X-ray, and gamma-ray wavelengths. In particular, the poster contains images of the Galactic 21-cm and CO (J = 1 → 0) line emission, and IRAS 12, 60, and 100 μm, COBE/DIRBE 1.25, 2.2, and 3.5 μm, Digitized Sky Survey optical wavelength, ROSAT/PSPC 0.25, 0.75, and 1.5 keV X-ray, and CGRO/EGRET E > 100 MeV gamma ray broadband emission. All of the data sets are publicly available. Captions describe the Milky Way and what can be learned about the Galaxy from measurements made in each segment of the electromagnetic spectrum. The poster is intended to be an educational tool, one that will stimulate heightened awareness by laypersons of NASA's contribution to modern astronomy.Through an interface available on the World Wide Web at http://adf.gsfc.nasa.gov/adf/adf.html one may view the images that appear on the poster, read the poster captions, and locate the archived data and references.


2003 ◽  
Vol 212 ◽  
pp. 505-514 ◽  
Author(s):  
Jürgen Knödlseder

The Cygnus X region is one of the most nearby star formation regions within our Galaxy, that is recognised by prominent emission throughout the entire electromagnetic spectrum, from radio to gamma-ray waves. The centre is populated by the peculiar stellar cluster Cyg OB2, traditionally classified as OB association, but in the light of modern data more likely the prototype of a young globular cluster within our own Galaxy. Heavily shredded by dense molecular clouds this object has been less thoroughly studied than other, more distant star formation complexes in the Milky Way. I will review our current knowledge about this object, by exposing its properties and that of its environment throughout the entire electromagnetic spectrum. Particular emphasis will be given to infrared, radio-continuum, X-ray, and gamma-ray line observations that find in Cyg OB2 a text-book case for multiwavelength studies.


2012 ◽  
Vol 21 (3) ◽  
Author(s):  
A. M. Mickaelian

AbstractWe review the status of all-sky and large astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from gamma-ray to radio, such as ROSAT in X-ray, GALEX in UV, SDSS and several POSS1/2 based catalogs (APM, MAPS, USNO, GSC) in optical, 2MASS and WISE in NIR, IRAS and AKARI in MIR/FIR, NVSS and FIRST in radio range and others. Present astronomical archives contain billions of objects, Galactic as well as extragalactic, and the vast amount of data in them permit new studies and discoveries. Cross-correlations result in revealing new objects and new samples. Very often, dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. Most of the modern databases currently provide VO access to the stored information. This permits not only open access but also fast analysis and managing of these data.


2003 ◽  
Vol 214 ◽  
pp. 70-83 ◽  
Author(s):  
T. P. Li

The energy range of hard X-rays is a key waveband to the study of high energy processes in celestial objects, but still remains poorly explored. In contrast to direct imaging methods used in the low energy X-ray and high energy gamma-ray bands, currently imaging in the hard X-ray band is mainly achieved through various modulation techniques. A new inversion technique, the direct demodulation method, has been developed since early 90s. with this technique, wide field and high resolution images can be derived from scanning data of a simple collimated detector. The feasibility of this technique has been confirmed by experiment, balloon-borne observation and analyzing simulated and real astronomical data. Based the development of methodology and instrumentation, a high energy astrophysics mission – Hard X-ray Modulation Telescope (HXMT) has been proposed and selected in China for a four-year Phase-A study. The main scientific objectives are a full-sky hard X-ray (20–200 keV) imaging survey and high signal-to-noise ratio timing studies of high energy sources.


2020 ◽  
Vol 496 (2) ◽  
pp. 2213-2229 ◽  
Author(s):  
F D’Ammando

ABSTRACT We report the analysis of all Swift observations available up to 2019 April of γ-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). The distribution of X-ray luminosities (and fluxes) indicates that the jet radiation significantly contributes to their X-ray emission, with Doppler boosting making values higher than other radio-loud NLSy1. The 0.3–10 keV photon indices are on average harder with respect to radio-quiet and radio-loud NLSy1, confirming a dominant jet contribution in X-rays. However, the lower variability amplitude with respect to blazars and the softening of the spectrum in some periods suggests that also the corona radiation contributes to the X-ray emission. In optical and ultraviolet (UV) significant flux changes have been observed on daily, weekly, and monthly time-scale, providing a clear indication of the significant contribution of the jet radiation in this part of spectrum. A strong correlation between X-ray, UV, and optical emission and simultaneous flux variations have been observed in 1H 0323+342, SBS 0846+513, PMN J0948+0022 as expected in case the jet radiation is the dominant mechanism. Correlated multiband variability favours the jet-dominated scenario also in FBQS J1644+2619 and PKS 2004−447. The summed X-ray Telescope spectra of 1H 0323+342, SBS 0846+513, PMN J0948+0022, and FBQS J1644+2619 are well fitted by a broken power law with a break around 2 keV. The spectrum above 2 keV is dominated by the non-thermal emission from a beamed relativistic jet, as suggested by the hard photon index. A Seyfert-like feature like the soft X-ray excess has been observed below 2 keV, making these γ-ray-emitting NLSy1 different from typical blazars.


1990 ◽  
Vol 123 ◽  
pp. 41-48
Author(s):  
F. Makino

AbstractThe X-ray astronomy satellite Ginga carries three scientific instruments, the Large Area proportional Counters (LAC), All Sky X-ray Monitor (ASM) and Gamma-ray Burst Detector (GBD). The LAC is the main instrument with an effective area of 4000 cm2 giving it the highest sensitivity to hard X-rays so far achieved. Ginga observed about 250 targets up to the end of 1989.


2014 ◽  
Vol 03 (02) ◽  
pp. 1440008 ◽  
Author(s):  
M. Beilicke ◽  
F. Kislat ◽  
A. Zajczyk ◽  
Q. Guo ◽  
R. Endsley ◽  
...  

X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X-ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCμS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a Cadmium Zinc Telluride (CZT) detector assembly to measure the polarization of 20–80 keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ≃80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2–100 keV energy band.


1964 ◽  
Vol 18 (6) ◽  
pp. 171-174 ◽  
Author(s):  
C. J. Toussaint ◽  
G. Vos

A method is presented for the determination of carbon in solid hydrocarbons using the intensity ratio of incoherent to coherent scattering of x-rays. The method is very rapid with precision at the 95% confidence level of about ±0.3%. The minimum sample weight necessary is 0 2 g. Analysis of samples by the x-ray method shows good agreement with values obtained by microcombustion. Finally a general comparison between different methods for carbon determination in solid hydrocarbons is discussed.


Sign in / Sign up

Export Citation Format

Share Document