Second Paper: Recent Studies on Rotary-Engine Lubrication

1974 ◽  
Vol 188 (1) ◽  
pp. 295-302
Author(s):  
J. Y. Breau ◽  
B. J. Miller ◽  
P. Möller ◽  
T. W. Rogers

Rotary-engine lubrication studies have been conducted on four engines covering the two types of rotary engine now in production. Metallic or carbon-metallic apex seals were used. Results presented have been obtained with 13 different oil formulations, including passenger-car-engine oils corresponding to API SC, SD or SE categories, automatic-transmission fluids of the Dexron II type, and oils for two-stroke engines. Seven different test procedures have been used in these investigations, employing either engine bench test stands or vehicles on chassis dynamometers. Satisfactory rotary-engine performance has been obtained with oils containing from 0 to 1·2 per cent by weight of sulphated ash. The ability of the base stock to provide good film thickness has also been found of benefit in reducing rotary-engine wear. Passenger-car-engine oils can be excellent rotary-engine lubricants and those oils corresponding to the latest API SE classification exhibit better performance than previous API SC or SD oils. Automatic-transmission fluids have also given promising results.

2016 ◽  
Vol 24 (9) ◽  
pp. 1774-1786 ◽  
Author(s):  
Sérgio J Idehara ◽  
Fernando L Flach ◽  
Douglas Lemes

A vibration model of the powertrain can be used to predict its dynamic behavior when excited by fluctuations in the engine torque and speed. The torsional vibration resulting from torque and speed fluctuations increases the rattle noise in the gearbox and it should be controlled or minimized in order to gain acceptance by clients and manufactures. The fact that the proprieties of the torsional damper integrated into the clutch disc alter the dynamic characteristic of the system is important in the automotive industry for design purposes. In this study, bench test results for the characteristics of a torsional damper for a clutch system (torsional stiffness and friction moment) and powertrain torsional vibration measurements taken in a passenger car were used to verify and calibrate the model. The adjusted model estimates the driveline natural frequency and the time response vibration. The analysis uses order tracking signal processing to isolate the response from the engine excitation (second-order). It is shown that a decrease in the stiffness of the clutch disc torsional damper lowers the natural frequency and an increase in the friction moment reduces the peak amplitude of the gearbox torsional vibration. The formulation and model adjustment showed that a nonlinear model with three degrees of freedom can represent satisfactorily the powertrain dynamics of a front-wheel drive passenger car.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3694
Author(s):  
Chuanxue Song ◽  
Gangpu Yu ◽  
Shuai Yang ◽  
Ruoli Yang ◽  
Yi Sun ◽  
...  

This article summarises the development and experience of the Formula Student race car engine from 2018. According to the technical rules of Formula Student after the change in 2017, this engine adopts a new design concept, employs a 690-mL single-cylinder engine as the base, and applies ‘response enhancement technology’ with supercharging as the core to achieve a high-power output, a wide high-torque range and an excellent response capability. During the development, various studies on the dynamic performance of the vehicle and the engine were conducted, including vehicle dynamics analysis and track simulation, parameter matching of the supercharger and the engine, control strategy design, and the intake and exhaust system design. This research builds a supercharger air flow and efficiency test bench and an engine performance test bench. Test results show that the developed engine can output 122% of the original power and 120% of the original torque with a 20-mm diameter intake restrictor. Compared with previous generation race cars with a turbocharged four-cylinder engine, the new race car‘s 0–100 km/h acceleration time is shortened by 0.2 s, the torque response time under typical condition is shortened by 80%, and the lap time of the integrated circuit is reduced by 7%.


2014 ◽  
Vol 988 ◽  
pp. 647-652
Author(s):  
Yun Jiang Cheng ◽  
Yan Fang Liu ◽  
Xiang Yang Xu

Matching analysis of automatic transmission fluid (ATF) and the hydraulic control system is an essential work for the development of ATFs used in automatic transmissions. Based on the hydrodynamic theory, an ATF model was built. By adopting the modeling concept of combining and establishing models with basic elements, the hydraulic control system model was built, and then complete matching model was built by introducing the ATF model into it. The matching level of the ATF and the hydraulic control system was evaluated, and the key parameters which influence the performance of the hydraulic control system and their proper values were defined, which will be reference for developing optimal ATFs. With the bench test result and vehicle test result on road, the matching method and models for ATFs with the hydraulic control system are confirmed to be effective and feasible, which can significantly shorten the development cycle of ATFs.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Fenlian Huang ◽  
Jilin Lei ◽  
Qianfan Xin

Abstract This paper investigates the operating characteristics of an off-road diesel engine to enhance its power performance in plateau. First, the impacts of altitude on the power, fuel economy, and emissions characteristics were analyzed by a bench test. Second, the combustion and overall performance working at different altitudes were studied by three-dimensional numerical simulation, including the relationship between fuel injection parameters and engine performance. The results showed that altitude significantly affects the performance of the off-road diesel engine. As the altitude increased from 0 m to 2000 m, the engine power decreased as much as 4.3%, and the brake-specific fuel consumption (BSFC) increased as much as 6%. At the peak torque condition, the intake manifold boost pressure and the exhaust manifold pressure both reduced with a rise of altitude, while the intake and exhaust manifold temperatures both increased with a rise of altitude. Finally, after comparing the in-cylinder flow conditions and combustion characteristics given by six combustion chamber designs that have different shrinkage ratios, the engine performance at 4000 m altitude with five different fuel spray angles were further optimized. The engine rated power increased by 8.2% when the shrinkage ratio was 7.28% and the fuel spray angle was 150 deg at the 4000 m altitude.


Author(s):  
W. Scott Wayne ◽  
Ryan A. Barnett ◽  
Jeffrey M. Cutright ◽  
Ted E. Stewart

As part of the Norfolk-Southern Railroad’s on-going investigation into fuel consumption reductions for their fleet of 3000 locomotives, the Center for Alternative Fuels, Engines and Emissions at West Virginia University conducted on-site locomotive engine performance and emissions measurements to characterize the performance, fuel consumption and emissions associated with fuel injectors from two injector suppliers. Emissions and fuel consumption were measured using the West Virginia University Transportable Locomotive Emissions Testing Laboratory, which was set up at the Norfolk-Southern Heavy Repair Facility in Roanoke, Virginia. The tests were conducted to evaluate potential emissions and fuel consumption differences between two fuel injector suppliers using an EMD GP38-2 locomotive equipped with a 2100 hp (1566 kW), 16-cylinder, EMD 16-645E engine. The test locomotive engine was freshly overhauled and certified to the EPA locomotive Tier 0 emissions standards. Emissions and fuel consumption measurements were conducted according to the Federal Test Procedures defined in the Code of Federal Regulations 40CFR Part 92 Subpart B [1]. The engine was first tested in the “as overhauled” configuration with the OEM fuel injectors to establish the baseline emissions and fuel consumption. The baseline FTP results confirmed that this locomotive was in compliance with the Federal Tier 0 emissions standards. The OEM specification fuel injectors were replaced with “Fuel Saver” injectors designed and manufactured by an aftermarket injector supplier referred to in this paper as Supplier B. The Supplier B injectors reduced fuel consumption on the average of 2–4% for each notch, except for Notch 4 and Low Idle. However, the Supplier B injectors increased the NOx levels by 20–30% for almost every notch, which is an expected result due to the improved combustion efficiency.


Sign in / Sign up

Export Citation Format

Share Document