High-Speed Photography of Fuel Spray and Combustion Events in a Production Diesel Engine and Combustion Bomb

Author(s):  
E R Karimi

The endoscopic high-speed combustion photography technique was used on a four-cylinder Perkins engine to investigate spray formation and combustion events under different engine running conditions. Some tests were also carried out in a fixed-volume combustion chamber (bomb) using conditions similar to those of the engine. The major advantage of using this rig was that each parameter could be varied independently. Spray formation, penetration rate and evaporation were studied in detail. Ignition delay times were established and the location of the start of combustion was identified. Finally, in the analysis of the results the most important factors affecting combustion in a direct injection (DI) diesel engine were outlined.

Author(s):  
Tomio Obokata ◽  
Tsuneaki Ishima ◽  
Seiichi Shiga ◽  
Yousuke Eguro ◽  
Tomoyuki Matsuda ◽  
...  

Abstract To realize the pre-mixed combustion type Diesel engine, analyses of the wide-angle conical spray flow and its application to the direct injection Diesel engine have been made. In the present work, the spray was evaluated by high speed flow visualization, particle image velocimetry (PTV) measurement, phase Doppler anemometer (PDA) measurement and numerical simulation by KTVA-3V code, and finally the combustion and exhaust characteristics of the proposed engine are examined. The penetration and the shape of the conical sprays under different ambient pressures (0.1, 1.0 and 2.0 MPa) are obtained experimentally and with numerical simulations. Generally, good agreements between them are achieved. It is also cleared that the spray formation is strongly influenced by the surrounding pressure. PIV measurements show the initial development of the spray. The maximum velocity is about 80 m/s, which is almost in the same range as that obtained by the PDA measurements. For the combustion experiment, the excess air ratio was set at 3.1 and 2.5. The engine speed was varied from 1000 to 2000 rpm. Expected premixed combustion region is realized at around the fuel injection timing prior to 65 degree BTDC, where NOx and soot emissions are almost zero at the excess air ratio of 3.1.


2019 ◽  
Vol 13 (2) ◽  
pp. 4869-4879
Author(s):  
S. Rajesh Kumar ◽  
P. Sai Chaitanya

An investigational research is carried out to found the performance and emission characteristics of a direct injection (DI) diesel engine with aluminium oxide nanoparticle additives in water and biodiesel blend. Palm methyl ester was produced by transesterification and blended with water. Aluminium oxide nanoparticles of 50 and 100 ppm in proportion are subjected to high-speed mechanical agitation followed by ultrasonication. The experimentations were conducted on a single cylinder DI diesel engine at a constant speed of 1500 rpm using different aluminium-oxide (AL2O3)-blended with emulsified biodiesel (PBD5%W+100ppm, PBD10%W+50ppm, PBD15%W+100ppm, PBD20%W+50ppm) and the outcomes were compared with those of neat diesel and Palm biodiesel. The experimental results indicated that brake thermal efficiency of PBD20%W+50 ppm and PBD+15%W+100ppm aluminium oxide was increased by 3-4% with 1.72% betterment in specific fuel consumption. Emissions of nitrogen oxide and hydrocarbon were reasonably lower than diesel fuel.


Author(s):  
Vineet Kumar ◽  
Rakesh Parkash Gakkhar

Experimental investigation was carried out in order to optimize the performance of a small high speed direct injection diesel engine running on Jatropha methyl ester (JME), using Taguchi methods. In the investigation three controlled parameters — injection timing, load and speed — were varied at three levels and their effect on the engine output responses — engine noise, combustion noise, smoke, NOx, HC emissions and brake specific fuel consumption were studied. Taguchi method was found to be efficient for investigating the effect of speed, load and injection timing on the engine noise, emissions and fuel economy. Analysis of variance (ANOVA) was used to find out the percentage contributions of the controlled parameters on the engine output responses. To optimize the performance, optimum combinations of the controlled parameters were found using the signal to noise (S/N) ratio. The engine output responses were predicted at those combinations. Further, confirmation runs were carried out which showed good agreement with the predicted engine output responses.


Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


2021 ◽  
Author(s):  
Thanigaivelan V ◽  
Lavanya R

Abstract Emission from the DI diesel engine is series setback for environment viewpoint. Intended for that investigates for alternative biofuel is persuaded. The important hitches with the utilization of biofuels and their blends in DI diesel engines are higher emanations and inferior brake-thermal efficiency as associated to sole diesel fuel. In this effort, Cashew nut shell liquid (CNSL) biodiesel, hydrogen and ethanol (BHE) mixtures remained verified in a direct-injection diesel engine with single cylinder to examine the performance and discharge features of the engine. The ethanol remained supplemented 5%, 10% and 15% correspondingly through enhanced CNSL as well as hydrogen functioned twin fuel engine. The experiments done in a direct injection diesel engine with single-cylinder at steadystate conditions above the persistent RPM (1500RPM). Throughout the experiment, emissions of pollutants such as fuel consumption rate (SFC), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and pressure of the fuel were also measured. cylinders. The experimental results show that, compared to diesel fuel, the braking heat of the biodiesel mixture is reduced by 26.79-24% and the BSFC diminutions with growing addition of ethanol from the CNSL hydrogen mixture. The BTE upsurges thru a rise in ethanol proportion with CNSL hydrogen mixtures. Finally, the optimum combination of ethanol with CNSL hydrogen blends led to the reduced levels of HC and CO emissions with trivial upsurge in exhaust gas temperature and NOx emissions. This paper reconnoiters the routine of artificial neural networks (ANN) to envisage recital, ignition and discharges effect.


Sign in / Sign up

Export Citation Format

Share Document