Development of the Trilateral Flash Cycle System Part 2: Increasing Power Output with Working Fluid Mixtures

Author(s):  
I K Smith ◽  
R Pitanga Marques da Silva

The trilateral flash cycle system is a proposed means of power recovery from single-phase low-grade heat sources. Its feasibility depends on the efficient adiabatic expansion of light hydrocarbons from the saturated liquid phase into the two-phase region. Such a process is performed most effectively with a Lysholm twin-screw expander when the exhausted vapour is wet. At higher temperatures, when multi-stage expansion is required, working fluids may be found which complete the process as dry saturated vapour. It is shown that at condensing temperatures of 0–50°C, this is possible with a mixture of n-pentane and 2,2–dimethylpropane (neopentane) for fluid inlet temperatures in the 150–180 °C range. A radial inflow turbine may then be used in place of a screw for the last stage. With such an arrangement, expander adiabatic efficiencies of up to 85 per cent have been predicted for power outputs in excess of 5 MW. The method of fluid property estimation is described and its accuracy confirmed by experiment.

Author(s):  
I K Smith

The world market for systems for power recovery from low-grade heat sources is of the order of £1 billion per annum. Many of these sources are hot liquids or gases from which conventional power systems convert less than 2.5 per cent of the available heat into useful power when the fluid is initially at a temperature of 100° C rising to 8–9 per cent at an initial temperature of 200°C. Consideration of the maximum work recoverable from such single-phase heat sources leads to the concept of an ideal trilateral cycle as the optimum means of power recovery. The trilateral flash cycle (TFC) system is one means of approaching this ideal which involves liquid heating only and two-phase expansion of vapour. Previous work related to this is reviewed and details of analytical studies are given which compare such a system with various types of simple Rankine cycle. It is shown that provided two-phase expanders can be made to attain adiabatic efficiencies of more than 75 per cent, the TFC system can produce outputs of up to 80 per cent more than simple Rankine cycle systems in the recovery of power from hot liquid streams in the 100–200°C temperature range. The estimated cost per unit net output is approximately equal to that of Rankine cycle systems. The preferred working fluids for TFC power plants are light hydrocarbons.


Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. A supercritical Rankine cycle does not go through two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process happens non-isothermally. Both of the features create a potential in reducing the irreversibility and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle improves the cycle thermal efficiency, exergy efficiency of the heating and the condensation processes, and the system overall efficiency.


Author(s):  
W E Lear ◽  
G M Parker ◽  
S A Sherif

A one-dimensional mathematical model was developed using the equations governing the flow and thermodynamics within a jet pump with a mixing region of constant cross-sectional area. The analysis is capable of handling two-phase flows and the resulting flow phenomena such as condensation shocks and the Fabri limit on the secondary mass flowrate. This work presents a technique for quickly achieving first-approximation solutions for two-phase ejectors. The thermodynamic state of the working fluid, R-134a for this analysis, is determined at key locations within the ejector. From these results, performance parameters are calculated and presented for varying inlet conditions. The Fabri limit was found to limit the operational regime of the two-phase ejector because, in the two-phase region, the speed of sound may be orders of magnitude smaller than in a single-phase fluid.


Author(s):  

During the operation of twin screw expanders with slightly superheated vapours or even two-phase fluids, surface condensation on machine parts occurs during the filling period and the expansion phase when the working fluid is in contact with cooler inner surfaces. This heat exchange from the working fluid to adjacent machine parts effects the working cycle and the efficiency of these machines. Short time scales and the periodicity of the process indicate the condensation process is best described by models for dropwise condensation. In this paper the effects of surface condensation on the operation of twin screw expanders are initially discussed in a simulation-based investigation. Chamber model simulation coupled with a thermal analysis is used for the thermodynamic simulation, whereby heat transfer coefficients are systematically varied. It is found that during the inlet phase condensate emerges on the inner surfaces of the machine being substantially cooler than the working fluid. This results in a higher mass being trapped within the working chamber and, thus, an increasing mass flow rate of the machine. An increase in power output is, however, not observed. The results obtained from chamber model simulations are finally compared against experimental data of a screw expander prototype


Author(s):  
Gerald Müller ◽  
Chun Ho Chan ◽  
Alexander Gibby ◽  
Muhammad Zubair Nazir ◽  
James Paterson ◽  
...  

The cost-effective utilisation of low-grade thermal energy with temperatures below 150 ℃ for electricity generation still constitutes an engineering challenge. Existing technology, e.g. the organic Rankine cycle machines, are complex and only economical for larger power outputs. At Southampton University, the steam condensation cycle for a working temperature of 100 ℃ was analysed theoretically. The cycle uses water as working fluid, which has the advantages of being cheap, readily available, non-toxic, non-inflammable and non-corrosive, and works at and below atmospheric pressure, so that leakage and sealing are not problematic. Steam expansion will increase the theoretical efficiency of the cycle from 6.4% (no expansion) to 17.8% (expansion ratio 1:8). In this article, the theoretical development of the cycle is presented. A 40 Watt experimental engine was built and tested. Efficiencies ranged from 0.02 (no expansion) to 0.055 (expansion ratio 1:4). The difference between theoretical and experimental efficiencies was attributed to significant pressure loss in valves, and to difficulties with heat rejection. It was concluded that the condensing engine has potential for further development.


Author(s):  
Ameen Muhammed ◽  
Dara W. Childs

In turbomachines, the transfer of energy between the rotor and the fluid does not—in theory—result in lateral forces on the rotor. In positive displacement machines, on the other hand, the transfer of energy between the moving components and the working fluid usually results in unbalanced pressure fields and forces. Muhammed and Childs (2013, “Rotordynamics of a Two-Phase Flow Twin Screw Pump,” ASME J. Eng. Gas Turbines Power, 135(6), p. 062502) developed a model to predict the dynamic forces in twin-screw pumps, showing that the helical screw shape generates hydraulic forces that oscillate at multiples of running speed. The work presented here attempts to validate the model of Muhammed and Childs (2013, “Rotordynamics of a Two-Phase Flow Twin Screw Pump,” ASME J. Eng. Gas Turbines Power, 135(6), p. 062502) using a clear-casing twin-screw pump. The pump runs in both single and multiphase conditions with exit pressure up to 300 kPa and a flow rate 0.6 l/s. The pump was instrumented with dynamic pressure probes across the axial length of the screw in two perpendicular directions to validate the dynamic model. Two proximity probes measured the dynamic rotor displacement at the outlet to validate the rotordynamics model and the hydrodynamic cyclic forces predicted by Muhammed and Childs (2013, “Rotordynamics of a Two-Phase Flow Twin Screw Pump,” ASME J. Eng. Gas Turbines Power, 135(6), p. 062502). The predictions were found to be in good agreement with the measurements. The amplitude of the dynamic pressure measurements in two perpendicular plans supported the main assumptions of the model (constant pressure inside the chambers and linear pressure drop across the screw lands). The predicted rotor orbits at the pump outlet in the middle of the rotor matched the experimental orbits closely. The spectrum of the response showed harmonics of the running speed as predicted by the model. The pump rotor's calculated critical speed was at 24.8 krpm, roughly 14 times the rotor's running speed of 1750 rpm. The measured and observed excitation frequencies extended out to nine times running speed, still well below the first critical speed. However, for longer twin-screw pumps running at higher speed, the coincidence of a higher-harmonic excitation frequency with the lightly damped first critical speed should be considered.


2013 ◽  
Author(s):  
Menandro S. Berana ◽  
Edward T. Bermido

An ejector is a device with no moving components and is made up of four main parts: converging-diverging nozzle, suction chamber, mixing section and diffuser. It has become popular in refrigeration system as it gives the advantage of recovering expansion energy from high pressure difference into compression energy. In this study, the potential use of ejector in powerplants that use low-grade or low temperature heat sources was conceptualized and analytically investigated. A novel combination of the ejector and the organic Rankine cycle (ORC) was proposed. The driving fluid in the ejector of the proposed powerplant cycle is the high-pressure liquid in the separator that is just circulated back to the evaporator in the ORC. Further increase in turbine temperature drop (TTD), which can increase the power output and efficiency of the plant, can be achieved through expansion, mixing and recompression processes in the ejector. Ocean thermal energy conversion (OTEC), solar-boosted OTEC (SOTEC), solar-thermal, waste-heat driven, biomass and geothermal powerplants were considered in the analysis. Mathematical models in our previous studies were developed and used to calculate for nozzle and ejector parameters. The geometric profile of the ejector for optimization with categorized heat sources was determined. Isentropic, internally reversible, and irreversible two-phase nozzle expansions were analyzed. Two-phase flow calculations were continued in the mixing section. It was assumed that the constant-pressure mixing of the primary and secondary fluids occur at the hypothetical throat inside the constant-area section. Calculation for shock wave in the mixing section was also done. The diffuser was analyzed in a similar manner with the nozzle. Calculation for other components and plant efficiencies was finally conducted. Ammonia and propane which are both natural working fluids were used in the analysis. Evaporator temperature range from 293.15 K to 393.15 K and condenser and ambient temperatures range from 283.15 K to 308.15 K were used in the analysis. The lowest ambient temperature of 283.15 K was used for the OTEC and SOTEC powerplants. It was shown that ammonia and propane can operate up to 11 K and 12 K below the ambient temperature, respectively. Ejector efficiency ranged from 90 to 95% for both working fluids. The maximum efficiencies of the ejector powerplant were 19.2% for ammonia and 14.9% for propane, compared to 11.7% and 9.8% of the conventional ORC. It was analytically determined that the efficiency of the ejector powerplant is higher than that of the ORC powerplant for the same working fluid and conditions of the evaporator, condenser and the ambient.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 442 ◽  
Author(s):  
Kyoung Kim

The recently proposed organic flash cycle (OFC) has the potential for the efficient recovery of low-grade heat, mainly due to the reduction of irreversibilities in the heat input unit. In the present study, a modified OFC (OFCM) employing a two-phase expander (TPE) and regeneration is proposed and thermodynamic and optimization analysis on this cycle is conducted compared with the basic OFC (OFCB). Six substances are considered as the working fluids. Influences of flash temperature, source temperature, and working fluid are systemically investigated on the system performance. Results showed that OFCM is superior to OFCB in the aspects of power production, thermal, and second-law efficiencies.


Sign in / Sign up

Export Citation Format

Share Document