Fabrication and Photochromism of High-density Diarylethene Monolayer Immobilized on a Quartz-glass Substrate

2010 ◽  
Vol 39 (6) ◽  
pp. 638-639 ◽  
Author(s):  
Hiroyasu Nishi ◽  
Seiya Kobatake
2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151012
Author(s):  
Natangue Heita Shafudah ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

Cubic or tetragonal zirconia thin films of transparent and 100 nm thickness were selectively formed on a quartz glass substrate by heat-treating the molecular precursor films involving Zr(IV) complexes of nitrilotriacetic acid, at 500[Formula: see text]C in air for 1 h. A precursor solution was prepared by a reaction of the ligand and zirconium tetrabutoxide in alcohol under the presence of butylamine. By the addition of H2O2 or H2O into the solution, the spin-coated precursor films were converted to cubic zirconia thin films by the abovementioned procedure. Further, the identical phase was produced also in the case of the electro-sprayed precursor film which was formed by an addition of H2O2 into the solution. On the other hand, the tetragonal zirconia thin film was obtained from a precursor film formed by using a solution dissolving the original Zr(IV) complex of the ligand, without H2O2 nor H2O. The crystal structure of all thin films was determined by using both the X-ray diffraction (XRD) patterns and Raman spectra. Thus, the zirconia thin films of both crystals could be facilely and selectively obtained with no use of hetero-metal ion stabilizers. The XPS spectra of the thin films show that the O/Zr ratio of the cubic phase is 1.37 and slightly larger than tetragonal one (1.29), and also demonstrate that the nitrogen atoms, which may contribute to stabilize these metastable phases at room temperature, of about 5−7 atomic% was remained in the resultant thin films. The adhesion strengths of cubic zirconia thin film onto the quartz glass substrate was 68 MPa and larger than that of tetragonal one, when the precursor films were formed via a spin coating process. The optical and surface properties of the thin films were also examined in relation to the crystal systems.


Author(s):  
Jie Chen ◽  
Jun Wang

Hexagon-shaped Zn oxide nano-pole films with terraces and steps have been successfully fabricated by means of a combined approach involving sol-gel process, high-temperature heat treatment, and the hydrothermal method. The surface chemistry and morphological features of the films were characterized by means of x-ray photoelectron spectroscopy and scanning electron microcopy. All the diffraction peaks in x-ray diffraction pattern match with those of the hexagonal wurtzite phase of Zn oxide. Transmittance measurements show that the optical transmittance of the sample synthesized at 520°C on quartz glass substrate is the highest, reaching about 65% in the visible-light region. Based on the detailed structural characterization and the nucleation-growth kinetics, we find that the whole crystallization process of wurtzite Zn oxide nano-poles includes nanocatalysis and layer-by-layer growth mechanism. The present study provides an important understanding of the growth mechanism for nano-pole synthesis of Zn oxide and related materials.


2015 ◽  
Vol 23 (8) ◽  
pp. 2243-2249 ◽  
Author(s):  
谢晋 XIE Jin ◽  
冯彦科 FENG Yan-ke ◽  
程剑 CHENG Jian ◽  
吴可可 WU Ke-ke

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3352
Author(s):  
Yutaka Suwazono ◽  
Takuro Murayoshi ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

A single-walled carbon nanotube/anatase (SWCNT/anatase) composite thin film with a transmittance of over 70% in the visible-light region was fabricated on a quartz glass substrate by heat treating a precursor film at 500 °C in air. The precursor film was formed by spin coating a mixed solution of the titania molecular precursor and well-dispersed SWCNTs (0.075 mass%) in ethanol. The anatase crystals and Ti3+ ions in the composite thin films were determined by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The effect of the heating process on the SWCNTs was analyzed using Raman spectroscopy. The composite film showed an even surface with a scratch resistance of 4H pencil hardness, as observed using field-emission scanning electron microscopy and atomic force microscopy. The electrical resistivity and optical bandgap energy of the composite thin film with a thickness of 100 nm were 6.6 × 10−2 Ω cm and 3.4 eV, respectively, when the SWCNT content in the composite thin film was 2.9 mass%. An anodic photocurrent density of 4.2 μA cm−2 was observed under ultraviolet light irradiation (16 mW cm−2 at 365 nm) onto the composite thin film, thus showing excellent properties as a photoelectrode without conductive substrates.


2008 ◽  
Vol 57 (12) ◽  
pp. 7885
Author(s):  
Liu Quan-Sheng ◽  
Zhang Xi-Yan ◽  
Wang Neng-Li ◽  
Wang Xiao-Chun ◽  
Bai Zhao-Hui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document