Encapsulation of Water-soluble Vitamins by Gold Nanoparticles in Hydrophobic Media

2012 ◽  
Vol 41 (10) ◽  
pp. 1107-1109 ◽  
Author(s):  
Pengxiang Zhao ◽  
Jaime Ruiz ◽  
Lionel Salmon ◽  
Didier Astruc

2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.



2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.



Cellulose ◽  
2011 ◽  
Vol 18 (4) ◽  
pp. 929-936 ◽  
Author(s):  
Yukiko Enomoto-Rogers ◽  
Hiroshi Kamitakahara ◽  
Arata Yoshinaga ◽  
Toshiyuki Takano


2009 ◽  
pp. 4278 ◽  
Author(s):  
Andrew J. Hallett ◽  
Paul Christian ◽  
Jennifer E. Jones ◽  
Simon J. A. Pope


Author(s):  
Thi Lanh Le ◽  
Quang Khieu Dinh ◽  
Thai Hoa Tran ◽  
Hai Phong Nguyen ◽  
Thi Le Hien Hoang ◽  
...  


2017 ◽  
Vol 46 (27) ◽  
pp. 8736-8745 ◽  
Author(s):  
Cornelia E. Peña-González ◽  
Elzbieta Pedziwiatr-Werbicka ◽  
Dzmitry Shcharbin ◽  
Carlos Guerrero-Beltrán ◽  
Viktar Abashkin ◽  
...  

Water soluble gold nanoparticles have been isolated with pendant cationic carbosilane dendrons and their biological properties have been evaluated.



2020 ◽  
Vol 44 (16) ◽  
pp. 6130-6141 ◽  
Author(s):  
Guillem Fernández ◽  
Laura Bernardo ◽  
Ana Villanueva ◽  
Roser Pleixats

Water-soluble gold nanoparticles prepared in the presence of PEG-tagged tris-imidazolium bromide, containing Au(0) and Au(i) species, are reusable catalysts.



Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 396 ◽  
Author(s):  
Suhash Chavva ◽  
Sachin Deshmukh ◽  
Rajashekhar Kanchanapally ◽  
Nikhil Tyagi ◽  
Jason Coym ◽  
...  

Epigallocatechin gallate (EGCG) possesses significant antitumor activity and binds to laminin receptors, overexpressed on cancer cells, with high affinity. Gold nanoparticles (GNPs) serve as excellent drug carriers and protect the conjugated drug from enzymatic metabolization. Citrate-gold nanoparticles (C-GNPs) and EGCG-gold nanoparticles (E-GNPs) were synthesized by reduction methods and characterized with UV-visible spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Cytotoxicity of citrate, EGCG, C-GNPs, and E-GNPs was evaluated by the water-soluble tetrazolium salt (WST-1) assay. Nanoparticle cellular uptake studies were performed by TEM and atomic absorption spectroscopy (AAS). Dialysis method was employed to assess drug release. Cell viability studies showed greater growth inhibition by E-GNPs compared to EGCG or C-GNPs. Cellular uptake studies revealed that, unlike C-GNPs, E-GNPs were taken up more efficiently by cancerous cells than noncancerous cells. We found that E-GNP nanoformulation releases EGCG in a sustained fashion. Furthermore, data showed that E-GNPs induced more apoptosis in cancer cells compared to EGCG and C-GNPs. From the mechanistic standpoint, we observed that E-GNPs inhibited the nuclear translocation and transcriptional activity of nuclear factor-kappaB (NF-κB) with greater potency than EGCG, whereas C-GNPs were only minimally effective. Altogether, our data suggest that E-GNPs can serve as potent tumor-selective chemotoxic agents.



2006 ◽  
Vol 110 (34) ◽  
pp. 16867-16873 ◽  
Author(s):  
Yun Yang ◽  
Wei Wang ◽  
Jinru Li ◽  
Jin Mu ◽  
Huilin Rong


Sign in / Sign up

Export Citation Format

Share Document