scholarly journals Effect of Sodium Copper Chlorophyllin on Lipid Peroxidation. II. Effects on the Peroxidation of Lipids in Rat Liver Homogenates and of Free Unsaturated Fatty Acids

Eisei kagaku ◽  
1977 ◽  
Vol 23 (1) ◽  
pp. 23-26
Author(s):  
MASAKI SATO ◽  
NACHIKO IGUCHI ◽  
TOMOKA KOTANI ◽  
TOSHIRO MURATA
1968 ◽  
Vol 106 (2) ◽  
pp. 515-522 ◽  
Author(s):  
B. O. Christophersen

1. GSH efficiently inhibited the ascorbate-stimulated lipid peroxidation of the unsaturated fatty acids in the fresh microsomal fraction and mitochondria of rat liver, whereas the peroxidation in heat-denatured particles was little inhibited. 2. Cysteamine and diethyldithiocarbamate inhibited the peroxidation in both fresh and boiled particles. Thioglycollate and 2-mercaptoethanol had no inhibiting effect. Cysteine and homocysteine both stimulated the lipid peroxidation even in the absence of ascorbate. 3. The added GSH disappeared at nearly the same rate in the presence of fresh and of boiled particles to which ascorbate had been added, although considerably more malonaldehyde was formed in the boiled particles. In the absence of ascorbate little GSH disappeared. 4. It is suggested that the protective effect of GSH against lipid peroxidation depends on the preservation of heat-labile structures in the microsomal fraction and mitochondria.


1957 ◽  
Vol 35 (1) ◽  
pp. 15-23 ◽  
Author(s):  
J. F. Scaife ◽  
B. B. Migicovsky

The in vitro effect of alloxan and insulin on the synthesis of cholesterol and fatty acids from 1-C14-sodium acetate by rat liver homogenates has been examined. Alloxan caused a reduction in the incorporation of acetate into cholesterol, fatty acids, and C14O2, but an increase in the oxygen consumption and carbon dioxide production. The addition of insulin to homogenates caused a reduction in cholesterol synthesis but an increase in fatty acid synthesis both for normal and diabetic animals. Homogenates from thyrotoxic rats exhibited a marked reduction in cholesterol synthesis when compared with normal animals. C14O2 production by homogenates from starved rats was appreciably lower than for those from normal animals. With this exception no appreciable difference was found in the oxygen uptake, carbon dioxide, or C14O2 production in homogenates from normal, starved, thyroxine-treated, or diabetic animals. Synthesized cholesterol was found to be located principally in the particulate matter of the homogenates after they had been incubated with 1-C14-sodium acetate. Homogenates from starved rats showed no greater tendency to degrade preformed cholesterol during incubation than did those from normal rats.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 269
Author(s):  
Huiling Yan ◽  
Junjia Chen ◽  
Juan Liu

Lignification is especially prominent in postharvest pumelo fruit, which greatly impairs their attractiveness and commercial value. This study investigated the energy metabolism and lipid peroxidation and their relationship with accumulated lignin content in juice sacs of “Hongroumiyou” (HR) during 90 d of storage at 25 °C. The results indicated that, the alterations of energy metabolism in juice of sacs of postharvest pumelos was featured by a continuous decline in energy charge and ATP/ADP; an increase in succinic dehydrogenase (SDH) activity before 30 d and increases in activities of cytochrome c oxidase (CCO) and F0F1-ATPase before 60 d; but declines in activities of Ca2+-ATPase and H+-ATPase. Additionally, enhanced contents of H2O2, O2−, and –OH scavenging rate; increased malondialdehyde (MDA) content; and transformation of unsaturated fatty acids (USFA) to saturated fatty acids (USFA) and reduced USFA/SFA (U/S) could result in lipid peroxidation and membrane integrity loss. Moreover, correlation analysis showed that lignin accumulation was in close relation to energy metabolism and lipid peroxidation in juice sacs of postharvest pumelos. These results gave evident credence for the involvement of energy metabolism and lipid peroxidation in the lignin accumulation of HR pumelo fruit during postharvest storage.


1957 ◽  
Vol 35 (1) ◽  
pp. 15-23 ◽  
Author(s):  
J. F. Scaife ◽  
B. B. Migicovsky

The in vitro effect of alloxan and insulin on the synthesis of cholesterol and fatty acids from 1-C14-sodium acetate by rat liver homogenates has been examined. Alloxan caused a reduction in the incorporation of acetate into cholesterol, fatty acids, and C14O2, but an increase in the oxygen consumption and carbon dioxide production. The addition of insulin to homogenates caused a reduction in cholesterol synthesis but an increase in fatty acid synthesis both for normal and diabetic animals. Homogenates from thyrotoxic rats exhibited a marked reduction in cholesterol synthesis when compared with normal animals. C14O2 production by homogenates from starved rats was appreciably lower than for those from normal animals. With this exception no appreciable difference was found in the oxygen uptake, carbon dioxide, or C14O2 production in homogenates from normal, starved, thyroxine-treated, or diabetic animals. Synthesized cholesterol was found to be located principally in the particulate matter of the homogenates after they had been incubated with 1-C14-sodium acetate. Homogenates from starved rats showed no greater tendency to degrade preformed cholesterol during incubation than did those from normal rats.


1997 ◽  
Vol 127 (12) ◽  
pp. 2289-2292 ◽  
Author(s):  
Nathalie Danièle ◽  
Jean-Claude Bordet ◽  
Gilles Mithieux

2006 ◽  
Vol 3 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Predrag Ljubuncic ◽  
Suha Dakwar ◽  
Irina Portnaya ◽  
Uri Cogan ◽  
Hassan Azaizeh ◽  
...  

Teucrium poliumL. (Lamiaceae) (RDC 1117) is a medicinal plant whose species have been used for over 2000 years in traditional medicine due to its diuretic, diaphoretic, tonic, antipyretic, antispasmodic and cholagogic properties. The therapeutic benefit of medicinal plants is often attributed to their antioxidant properties. We previously reported that an aqueous extract of the leaves and stems of this plant could inhibit iron-induced lipid peroxidation in rat liver homogenate at concentrations that were not toxic to cultured hepatic cells. Others have reported that organic extracts of the aerial components of this plant could inhibit oxidative processes. Against this background, we felt further investigation on the antioxidant action of the extract ofT. poliumprepared according to traditional Arab medicine was warranted. Accordingly, we assessed (i) its ability to inhibit (a) oxidation of β-carotene, (b) 2,2′-azobis(2-amidinopropan) dihydrochloride (AAPH)-induced plasma oxidation and (c) iron-induced lipid peroxidation in rat liver homogenates; (ii) to scavenge the superoxide ($${\hbox{ O }}_{2}^{\bullet -}$$) radical and the hydroxyl radical (OH•); (iii) its effects on the enzyme xanthine oxidase activity; (iv) its capacity to bind iron; and (v) its effect on cell glutathione (GSH) homeostasis in cultured Hep G2 cells. We found that the extract (i) inhibited (a) oxidation of β-carotene, (b) AAPH-induced plasma oxidation (c) Fe2+-induced lipid peroxidation in rat liver homogenates (IC50 = 7 ± 2 μg ml−1); (ii) scavenged $${\hbox{ O }}_{2}^{\bullet -}$$(IC50 = 12 ± 3 μg ml−1) and OH• (IC50 = 66 ± 20 μg ml−1); (iii) binds iron (IC50 = 79 ± 17 μg ml−1); and (iv) tended to increase intracellular GSH levels resulting in a decrease in the GSSG/GSH ratio. These results demonstrate that the extract prepared from theT. poliumpossesses antioxidant activityin vitro. Further investigations are needed to verify whether this antioxidant effect occursin vivo.


1970 ◽  
Vol 119 (3) ◽  
pp. 525-533 ◽  
Author(s):  
H. A. Krebs ◽  
R. Hems

1. The formation of acetoacetate, β-hydroxybutyrate and glucose was measured in the isolated perfused rat liver after addition of fatty acids. 2. The rates of ketone-body formation from ten fatty acids were approximately equal and independent of chain length (90–132μmol/h per g), with the exception of pentanoate, which reacted at one-third of this rate. The [β-hydroxybutyrate]/[acetoacetate] ratio in the perfusion medium was increased by long-chain fatty acids. 3. Glucose was formed from all odd-numbered fatty acids tested. 4. The rate of ketone-body formation in the livers of rats kept on a high-fat diet was up to 50% higher than in the livers of rats starved for 48h. In the livers of fat-fed rats almost all the O2 consumed was accounted for by the formation of ketone bodies. 5. The ketone-body concentration in the blood of fat-fed rats rose to 4–5mm and the [β-hydroxybutyrate]/[acetoacetate] ratio rose to 11.5. 6. When the activity of the microsomal mixed-function oxidase system, which can bring about ω-oxidation of fatty acids, was induced by treatment of the rat with phenobarbitone, there was no change in the ketone-body production from fatty acids, nor was there a production of glucose from even-numbered fatty acids. The latter would be expected if ω-oxidation occurred. Thus ω-oxidation did not play a significant role in the metabolism of fatty acids. 7. Arachidonate was almost quantitatively converted into ketone bodies and yielded no glucose, demonstrating that gluconeogenesis from poly-unsaturated fatty acids with an even number of carbon atoms does not occur. 8. The rates of ketogenesis from unsaturated fatty acids (sorbate, undecylenate, crotonate, vinylacetate) were similar to those from the corresponding saturated fatty acids. 9. Addition of oleate together with shorter-chain fatty acids gave only a slightly higher rate of ketone-body formation than oleate alone. 10. Glucose, lactate, fructose, glycerol and other known antiketogenic substances strongly inhibited endogenous ketogenesis but had no effects on the rate of ketone-body formation in the presence of 2mm-oleate. Thus the concentrations of free fatty acids and of other oxidizable substances in the liver are key factors determining the rate of ketogenesis.


Sign in / Sign up

Export Citation Format

Share Document