Lower Limb Kinetic And Energetic Factors Associated With Stride Length In Healthy Human Gait

2009 ◽  
Vol 41 ◽  
pp. 3
Author(s):  
Paul DeVita ◽  
Patrick Rider ◽  
Tim Copple ◽  
Jonathan Patterson ◽  
Tibor Hortobagyi
2021 ◽  
Vol 7 ◽  
pp. e394
Author(s):  
Ningning Hu ◽  
Aihui Wang ◽  
Yuanhang Wu

The combination of biomedical engineering and robotics engineering brings hope of rehabilitation to patients with lower limb movement disorders caused by diseases of the central nervous system. For the comfort during passive training, anti-interference and the convergence speed of tracking the desired trajectory, this paper analyzes human body movement mechanism and proposes a robust adaptive PD-like control of the lower limb exoskeleton robot based on healthy human gait data. In the case of bounded error perturbation, MATLAB simulation verifies that the proposed method can ensure the global stability by introducing an S-curve function to make the design robust adaptive PD-like control. This control strategy allows the lower limb rehabilitation robot to track the human gait trajectory obtained through the motion capture system more quickly, and avoids excessive initial output torque. Finally, the angle similarity function is used to objectively evaluate the human body for wearing the robot comfortably.


2021 ◽  
Vol 2 ◽  
Author(s):  
Jo Ghillebert ◽  
Joost Geeroms ◽  
Louis Flynn ◽  
Sander De Bock ◽  
Renée Govaerts ◽  
...  

Abstract Background The CYBERLEGs-gamma (CLs-ɣ) prosthesis has been developed to investigate the possibilities of powerful active prosthetics in restoring human gait capabilities after lower limb amputation. Objective The objective of this study was to determine the performance of the CLs-ɣ prosthesis during simulated daily activities. Methods Eight participants with a transfemoral amputation (age: 55 ± 15 years, K-level 3, registered under: NCT03376919) performed a familiarization session, an experimental session with their current prosthesis, three training sessions with the CLs-ɣ prosthesis and another experimental session with the CLs-ɣ prosthesis. Participants completed a stair-climbing-test, a timed-up-and-go-test, a sit-to stand-test, a 2-min dual-task and a 6-min treadmill walk test. Results Comparisons between the two experimental sessions showed that stride length significantly increased during walking with the CLs-ɣ prosthesis (p = .012) due to a greater step length of the amputated leg (p = .035). Although a training period with the prototype was included, preferred walking speed was significantly slower (p = .018), the metabolic cost of transport was significantly higher (p = .028) and reaction times significantly worsened (p = .012) when walking with the CLs-ɣ compared to the current prosthesis. Conclusions It can be stated that a higher physical and cognitive effort were required when wearing the CLs-ɣ prosthesis. Positive outcomes were observed regarding stride length and stair ambulation. Future prosthetics development should minimize the weight of the device and integrate customized control systems. A recommendation for future research is to include several shorter training periods or a prolonged adaptation period.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bogdan Pietraszewski ◽  
Marek Woźniewski ◽  
Ryszard Jasiński ◽  
Artur Struzik ◽  
Andrzej Szuba

Objective. Intermittent claudication (IC) is a pathological symptom with a particular effect on human gait patterns. Therefore, analyzing these patterns can facilitate rehabilitation or treatment through comparison of the values of kinematic and kinetic variables of patients with the normal values of healthy people. Therefore, the aim of this study was to find differences in the values of gait variables between patients with IC and healthy people. Methods. The study included 98 patients diagnosed with peripheral arterial disease with IC. The patients traveled a distance of 6 m at a voluntary gait velocity. Ground reaction forces while the foot contacted the ground and kinematic variables of lower limb movements were recorded. The values of normal gait variables were computed based on the results obtained in a group of 30 healthy people. Results. Patients used a gait velocity below the norm for healthy people. The velocity during the lower limb swing and the step and stride length in patients with IC were below the norm. Differences were also found in the ranges of motion between patients with IC and healthy people for the pelvic obliquity, pelvic rotation, hip flexion-extension, hip abduction-adduction, hip internal-external rotation, knee flexion-extension, ankle dorsi-plantar flexion, and foot progression angles. Conclusions. The presented kinematic and kinetic characteristics measured by gait variables suggest differences between patients with IC and healthy people. Considering kinematic and kinetic gait variables during the rehabilitation process would facilitate the development of a more economic gait technique (with increased stride length and range of motion in the lower limb joints) to obtain the desired rehabilitation effects. Patients with IC should receive rehabilitation oriented towards improving mobility and increasing muscle strength in selected lower limb joints to increase gait velocity and stride length.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Sota Araki ◽  
Masayuki Kawada ◽  
Takasuke Miyazaki ◽  
Yuki Nakai ◽  
Yasufumi Takeshita ◽  
...  

Many stroke patients rely on cane or ankle-foot orthosis during gait rehabilitation. The purpose of this study was to investigate the immediate effect of functional electrical stimulation (FES) to the gluteus medius (GMed) and tibialis anterior (TA) on gait performance in stroke patients, including those who needed assistive devices. Fourteen stroke patients were enrolled in this study (mean poststroke duration: 194.9 ± 189.6   d ; mean age: 72.8 ± 10.7   y ). Participants walked 14 m at a comfortable velocity with and without FES to the GMed and TA. After an adaptation period, lower-limb motion was measured using magnetic inertial measurement units attached to the pelvis and the lower limb of the affected side. Motion range of angle of the affected thigh and shank segments in the sagittal plane, motion range of the affected hip and knee extension-flexion angle, step time, and stride time were calculated from inertial measurement units during the middle ten walking strides. Gait velocity, cadence, and stride length were also calculated. These gait indicators, both with and without FES, were compared. Gait velocity was significantly faster with FES ( p = 0.035 ). Similarly, stride length and motion range of the shank of the affected side were significantly greater with FES (stride length: p = 0.018 ; motion range of the shank: p = 0.02 6). Meanwhile, cadence showed no significant difference ( p = 0.238 ) in gait with or without FES. Similarly, range of motion of the affected hip joint, knee joint, and thigh did not differ significantly depending on FES condition ( p = 0.115 ‐ 0.529 ). FES to the GMed and TA during gait produced an improvement in gait velocity, stride length, and motion range of the shank. Our results will allow therapists to use FES on stroke patients with varying conditions.


2018 ◽  
Vol 43 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Wing Sum Li ◽  
Sze Ying Chan ◽  
Wai Wang Chau ◽  
Sheung-wai Law ◽  
Kai Ming Chan

Background: The 2008 Sichuan Earthquake resulted in many amputees, yet due to the rare incidence, few studies have explored the rehabilitation outcomes and quality of life of bilateral lower limb amputees after major natural disasters. Objectives: To evaluate rehabilitation outcomes of 17 young and adult bilateral lower limb amputees under the StandTall rehabilitation programme and to identify factors associated with successful functional recovery of bilateral amputees after large-scale disasters. Study Design: Cross-sectional study. Methods: Mobility (amputee mobility predictor), prosthesis use (Houghton Scale) and health-related quality of life (Trinity Amputation and Prosthesis Experience Scale, Short Form 12) were evaluated through questionnaires and performance-based assessments. Means of scores were compared using T-tests. Results: Subjects with bilateral through-knee or transtibial amputations had less activity restriction ( p < 0.01) and higher mobility ( p = 0.03). Subjects using prostheses more than 50% waking time had better general adjustment ( p = 0.02) and less functional restriction ( p = 0.01). Exercise and education were associated with higher mobility ( p = 0.06) and mental quality of life, respectively ( p = 0.09). Conclusions: Amputation level and knee joint salvage, prosthesis use, exercise and education were associated with better rehabilitation outcomes including ambulation, adjustment and quality of life in bilateral lower limb amputees from the 2008 Sichuan Earthquake. Clinical relevance The study examined a unique group of traumatic bilateral lower limb amputees who were young and healthy before having traumatic amputations from a single episode of natural disaster. The factors associated with better functional recovery after the earthquake were investigated and may support future development of post-disaster rehabilitation strategies for bilateral lower limb amputees.


Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


2020 ◽  
Vol 44 (4) ◽  
pp. 208-214
Author(s):  
Shannon L Mathis

Background: Factors that are related to mobility apprehension were measured in a sample of persons with lower-limb amputation. Objectives: The purpose was to determine whether intensity, interference, or catastrophizing are associated with mobility apprehension. Study design: Cross-sectional study. Methods: Persons with amputation of a lower limb who were attending a national limb loss conference were recruited to complete a survey. Subjects were administered the Tampa Scale for Kinesiophobia to measure mobility apprehension. The Brief Pain Inventory was administered to quantify the affect of pain on general activity, walking ability, and enjoyment of life. The Pain Catastrophizing Scale was administered to assess the tendency to ruminate and magnify pain sensations. A multivariable linear regression was performed to determine factors associated with mobility apprehension. Results: Fifty-three people with lower-limb amputation participated in the study. The mean (standard deviation) score for mobility apprehension was 34.2 (6.0). Mean (standard deviation) pain intensity and interference scores were 1.6 (1.7) and 2.5 (2.6), respectively. The mean (standard deviation) pain catastrophizing score was 9.1 (10). Pain catastrophizing was the only variable associated with higher mobility apprehension ( β = 0.31, p < 0.001, R2 = 0.32). Results suggest that for every one-point increase in the pain catastrophizing score, mobility apprehension will increase by 0.3 of a point. Conclusion: These preliminary results suggest that pain catastrophizing was related to mobility apprehension in this cohort of persons with lower-limb amputation. This relationship indicates that the exploration of avoidance behaviors, such as pain catastrophizing, may be useful when developing a program for physical rehabilitation. Clinical relevance Pain catastrophizing, an avoidance behavior, may be associated with higher levels of mobility apprehension in persons with major lower-limb amputation. Understanding the impact of fear-avoidance behavior will allow clinicians to identify individuals at risk for poor outcomes following amputation surgery and to develop psychological strategies to complement treatment.


Sign in / Sign up

Export Citation Format

Share Document