scholarly journals Voxel based evaluation of sequential radiotherapy treatment plans with different dose fractionation schemes

2020 ◽  
Vol 93 (1112) ◽  
pp. 20200197
Author(s):  
Gaganpreet Singh ◽  
Rose Kamal ◽  
Deepak Thaper ◽  
Arun Singh Oinam ◽  
Bhumika Handa ◽  
...  

Objective: This study presents a methodology for voxel-based evaluation of two phase sequential radiotherapy treatment plans having conventional dose scheme in the first phase and subsequent hypofractionation dose scheme in the second phase based upon different priority [planning target volume (PTV), clinical target volume (CTV) and organs at risk (OAR)] of display modes. Methods: A case of carcinoma prostate was selected for demonstration. Varian Eclipse treatment planning system (TPS) was used for contouring and planning. In the first phase, a dose of 52 Gy in 26 fractions to the PTV and in the second phase, a dose of 19.5 Gy in 3 fractions to the PTV Boost was planned on the same CT data set. Both the plans (Phase 1 and Phase 2) were exported and processed using “Voxel-based radiobiology display (VRb) tool”. Plan Sum for Biologically effective dose (BED)-Cube and equivalent dose of 2Gy (EQD2)-Cube was reconstructed using a combination of linear quadratic (LQ) and linear quadratic-linear (LQ-L) radiobiological models. Tumor control probability (TCP) and normal tissue complication probability (NTCP) for different target volumes and organs were also calculated using EQD2-volume histograms of the Plan Sum. Results: An in-house graphical user interface (GUI) is developed to present the qualitative and quantitative evaluation of the multiphase treatment plans with different display modes and dose regimens. The voxel based TCP obtained for the combined target volume was 90.56%. NTCP for the bladder and rectum was calculated from the Plan Sum histograms and found to be 0.33% and ~0.0% respectively. Conclusion: The proposed methodology using the VRb tool offers superior plan evaluation for multiphase sequential radiotherapy treatment plans over the existing methods. Advances in knowledge: PTV, CTV and OAR priority based display modes in VRb tool offers better understanding of radiobiological evaluation of sequential radiotherapy treatment plans.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Vanessa Da Silva Mendes ◽  
Lukas Nierer ◽  
Minglun Li ◽  
Stefanie Corradini ◽  
Michael Reiner ◽  
...  

Abstract Background The aim of this study was to evaluate and compare the performance of intensity modulated radiation therapy (IMRT) plans, planned for low-field strength magnetic resonance (MR) guided linear accelerator (linac) delivery (labelled IMRT MRL plans), and clinical conventional volumetric modulated arc therapy (VMAT) plans, for the treatment of prostate cancer (PCa). Both plans used the original planning target volume (PTV) margins. Additionally, the potential dosimetric benefits of MR-guidance were estimated, by creating IMRT MRL plans using smaller PTV margins. Materials and methods 20 PCa patients previously treated with conventional VMAT were considered. For each patient, two different IMRT MRL plans using the low-field MR-linac treatment planning system were created: one with original (orig.) PTV margins and the other with reduced (red.) PTV margins. Dose indices related to target coverage, as well as dose-volume histogram (DVH) parameters for the target and organs at risk (OAR) were compared. Additionally, the estimated treatment delivery times and the number of monitor units (MU) of each plan were evaluated. Results The dose distribution in the high dose region and the target volume DVH parameters (D98%, D50%, D2% and V95%) were similar for all three types of treatment plans, with deviations below 1% in most cases. Both IMRT MRL plans (orig. and red. PTV margins) showed similar homogeneity indices (HI), however worse values for the conformity index (CI) were also found when compared to VMAT. The IMRT MRL plans showed similar OAR sparing when the orig. PTV margins were used but a significantly better sparing was feasible when red. PTV margins were applied. Higher number of MU and longer predicted treatment delivery times were seen for both IMRT MRL plans. Conclusions A comparable plan quality between VMAT and IMRT MRL plans was achieved, when applying the same PTV margin. However, online MR-guided adaptive radiotherapy allows for a reduction of PTV margins. With a red. PTV margin, better sparing of the surrounding tissues can be achieved, while maintaining adequate target coverage. Nonetheless, longer treatment delivery times, characteristic for the IMRT technique, have to be expected.



2020 ◽  
Vol 7 (2) ◽  
pp. 51-61
Author(s):  
Sina Mossahebi ◽  
Pouya Sabouri ◽  
Haijian Chen ◽  
Michelle Mundis ◽  
Matthew O'Neil ◽  
...  

Abstract Purpose To investigate and quantify the potential benefits associated with the use of stopping-power-ratio (SPR) images created from dual-energy computed tomography (DECT) images for proton dose calculation in a clinical proton treatment planning system (TPS). Materials and Methods The DECT and single-energy computed tomography (SECT) scans obtained for 26 plastic tissue surrogate plugs were placed individually in a tissue-equivalent plastic phantom. Relative-electron density (ρe) and effective atomic number (Zeff) images were reconstructed from the DECT scans and used to create an SPR image set for each plug. Next, the SPR for each plug was measured in a clinical proton beam for comparison of the calculated values in the SPR images. The SPR images and SECTs were then imported into a clinical TPS, and treatment plans were developed consisting of a single field delivering a 10 × 10 × 10-cm3 spread-out Bragg peak to a clinical target volume that contained the plugs. To verify the accuracy of the TPS dose calculated from the SPR images and SECTs, treatment plans were delivered to the phantom containing each plug, and comparisons of point-dose measurements and 2-dimensional γ-analysis were performed. Results For all 26 plugs considered in this study, SPR values for each plug from the SPR images were within 2% agreement with measurements. Additionally, treatment plans developed with the SPR images agreed with the measured point dose to within 2%, whereas a 3% agreement was observed for SECT-based plans. γ-Index pass rates were > 90% for all SECT plans and > 97% for all SPR image–based plans. Conclusion Treatment plans created in a TPS with SPR images obtained from DECT scans are accurate to within guidelines set for validation of clinical treatment plans at our center. The calculated doses from the SPR image–based treatment plans showed better agreement to measured doses than identical plans created with standard SECT scans.



Author(s):  
Idajet Selmani ◽  
Partizan Malkaj

One of the most important issues in the field of radiotherapy is the correct distribution of the dose around the volume of interest or planning target volume (PTV). For making this possible the exact isodose in a treatment plan has to cover the PTV, so it is used the wedge which is a part of the linear accelerator head. Wedge plays the role of a filter and usually it is called wedge filter. The wedge filter is in use almost in all treatment plans, for all the parts of the body. In this paper it is consider the use of the wedge filter for treatment of rectum tumors. The process starts with the scanning of the patient and the deliantion of the interest’s volums in the Monaco system. In the following the imagins have been sent in the treatment planning system for making the nesessary plans for treatment of the rectum. Two plans were done, one with the use of the wedge and the other without using it. The dose volume histogram helps for compering the results of the plans. The best conformity of the isodoses it was for the plan with the use of wedge through volume of interest, which is planning target volume (PTV).



2021 ◽  
Vol 27 (1) ◽  
pp. 11-18
Author(s):  
Anoop Kumar Srivastava ◽  
Avinav Bharati ◽  
Madhup Rastogi ◽  
Surendra Prasad Mishra ◽  
Rohini Khurana ◽  
...  

Abstract Intensity-modulated radiotherapy (IMRT) is being practiced for the last several years with a special approach for radiation therapy in post-mastectomy breast cancer patients. Meeting the cardiac dose constraints has always been a challenge during radiotherapy planning by both IMRT and VMAT (volumetric modulated arc therapy) of post-mastectomy left breast patients. With the advancement in IMRT planning techniques, it has been modified to VMAT with more degrees of freedom for modulation and is being utilised more frequently. This helps in obtaining a suitable plan for achieving both the dose homogeneity in target volume and dose constraints to Organ at Risk (OAR). 10 Patients with carcinoma of the left breast (post-mastectomy) were selected for this study. VMAT treatment plans for these patients were generated for 6 MV photons on the Monaco treatment planning system (TPS) using two types of optimization modes i.e. Pareto and Constrained mode available in Monaco TPS. For comparative dosimetric evaluation of the efficacy of these two types of optimization modes similar calculation algorithms, calculation grids, arcs, and beam sequencing parameters were used for generating treatment plans. The dosimetric quantities such as volume receiving more than 95% of the prescribed dose (V95), volume receiving more than 107% of the prescribed dose (V107) and Maximum dose (Dmax) for target volume, mean dose (Dmean) for heart, volume receiving more than 30 Gy (V30) volume receiving more than 20 Gy (V20) volume receiving more than 5 Gy (V5) for ipsilateral lung and total monitor units delivered were analysed for both optimization modes. A judicious mix of multiple planning parameters and variables using these two modes of optimization was applied and recorded. Both optimization modes yielded similar outcomes. However, Pareto mode has shown better coverage for planning target volume (PTV) with comparable doses to OARs.



2020 ◽  
Vol 132 (5) ◽  
pp. 1473-1479 ◽  
Author(s):  
Eun Young Han ◽  
He Wang ◽  
Dershan Luo ◽  
Jing Li ◽  
Xin Wang

OBJECTIVEFor patients with multiple large brain metastases with at least 1 target volume larger than 10 cm3, multifractionated stereotactic radiosurgery (MF-SRS) has commonly been delivered with a linear accelerator (LINAC). Recent advances of Gamma Knife (GK) units with kilovolt cone-beam CT and CyberKnife (CK) units with multileaf collimators also make them attractive choices. The purpose of this study was to compare the dosimetry of MF-SRS plans deliverable on GK, CK, and LINAC and to discuss related clinical issues.METHODSTen patients with 2 or more large brain metastases who had been treated with MF-SRS on LINAC were identified. The median planning target volume was 18.31 cm3 (mean 21.31 cm3, range 3.42–49.97 cm3), and the median prescribed dose was 27.0 Gy (mean 26.7 Gy, range 21–30 Gy), administered in 3 to 5 fractions. Clinical LINAC treatment plans were generated using inverse planning with intensity modulation on a Pinnacle treatment planning system (version 9.10) for the Varian TrueBeam STx system. GK and CK planning were retrospectively performed using Leksell GammaPlan version 10.1 and Accuray Precision version 1.1.0.0 for the CK M6 system. Tumor coverage, Paddick conformity index (CI), gradient index (GI), and normal brain tissue receiving 4, 12, and 20 Gy were used to compare plan quality. Net beam-on time and approximate planning time were also collected for all cases.RESULTSPlans from all 3 modalities satisfied clinical requirements in target coverage and normal tissue sparing. The mean CI was comparable (0.79, 0.78, and 0.76) for the GK, CK, and LINAC plans. The mean GI was 3.1 for both the GK and the CK plans, whereas the mean GI of the LINAC plans was 4.1. The lower GI of the GK and CK plans would have resulted in significantly lower normal brain volumes receiving a medium or high dose. On average, GK and CK plans spared the normal brain volume receiving at least 12 Gy and 20 Gy by approximately 20% in comparison with the LINAC plans. However, the mean beam-on time of GK (∼ 64 minutes assuming a dose rate of 2.5 Gy/minute) plans was significantly longer than that of CK (∼ 31 minutes) or LINAC (∼ 4 minutes) plans.CONCLUSIONSAll 3 modalities are capable of treating multiple large brain lesions with MF-SRS. GK has the most flexible workflow and excellent dosimetry, but could be limited by the treatment time. CK has dosimetry comparable to that of GK with a consistent treatment time of approximately 30 minutes. LINAC has a much shorter treatment time, but residual rotational error could be a concern.



2020 ◽  
Author(s):  
Yijiang Li ◽  
Han Bai ◽  
Danju Huang ◽  
Feihu Chen ◽  
Xuhong Liu ◽  
...  

Abstract Purpose: This study aimed to evaluate (1) the performance of the Auto-Planning module embedded in the Pinnacle treatment planning system (TPS) with 30 left-side breast cancer plans and (2) the dose-distance correlations between dose-based patients and overlap volume histogram-based (OVH) patients. Method: A total of 30 patients with left-side breast cancer after breast-conserving surgery were enrolled in this study. The clinical manual-planning (MP) and the Auto-Planning (AP) plans were generated by Monaco and by the Auto-Planning module in Pinnacle respectively. The geometric information between organ at risk (OAR) and planning target volume (PTV) of each patient was described by the OVH. The AP and MP plans were ranked to compare with the geometry-based patients from OVH. The Pearson product-moment correlation coefficient (R) was used to describe the correlations between dose-based patients (APs and MPs) and geometry-based patients (OVH). Dosimetric differences between MP and AP plans were evaluated with statistical analysis. Result: The correlation coefficient (mean R = 0.71) indicated that the AP plans have a high correlation with geometry-based patients from OVH, whereas the correlation coefficient (mean R = 0.48) shows a weak correlation between MP plans and geometry-based patients. For different indicators, the dose distribution of V5Gy in the ipsilateral lung (AP: mean R = 0.82; MP: mean R = 0.58) is more relevant to geometry-based patients compared to the dose distribution of in the heart (AP: mean R = 0.4; MP: mean R = 0.19). The dosimetric comparison revealed a statistically significant improvement in ipsilateral lung V5Gy and V10Gy and in the heart V5Gy of AP plans compared to MP plans. Conclusion: The overall results of AP plans were superior to MP plans. The dose distribution in AP plans was more consistent with the distance-dose relationship described by OVH. After eliminating the interference of human factors, the AP was able to provide more stable and objective plans for radiotherapy patients.



2018 ◽  
Vol 22 ◽  
pp. 01049 ◽  
Author(s):  
Yonca Yahşi Çelen ◽  
Atilla Evcin

It is aimed to compare the values of conformity index (CI), homogeneity index (HI), monitor unit (MU) of volumetrically adjusted arthritis therapy (VMAT) plans using 10 prostate cancer patients with flattened filter (FF) and without flattening filter (FFF). In the study, treatment plans were prepared using 6 FF and 6 FFF in the Eclipse (ver.13.6) treatment planning system with Varian Trilogy Linear Accelerator. When planning was completed, CI averaged 0.87, HI averaged 0.44 and MU values were found to be 591 ± 26.8, 650 ± 33.06, respectively. When the PTV coverage, CI, HI and MU comparisons were made as a result of planning, there was no significant difference when comparing VMAT plans in FFF and FF energies. When we compare the MU values, the MU increase is seen when the straightening filter is removed. In both energy modes, good homogeneity in PTV was achieved with conventional francitation and close dose rates. No significant advantages and disadvantages of the unfiltered energy mode were observed in the assessment of plan quality in terms of CI, HI.



Sign in / Sign up

Export Citation Format

Share Document