scholarly journals Experimental Study of Decay Conditions of Organic Matter and its Significant for Immature Oil Generation

2006 ◽  
Vol 24 (3) ◽  
pp. 161-170 ◽  
Author(s):  
Yuzhuang Sun ◽  
Jialan Lu ◽  
Jiangping Chen ◽  
Ping Li ◽  
Kankun Jin ◽  
...  
2013 ◽  
Vol 67 (11) ◽  
pp. 2616-2621 ◽  
Author(s):  
Ying-Heng Fei ◽  
Xiao-Yan Li

The effect of decomposition and diagenesis of sediment organic matter (SOM) on the adsorption of emerging pollutants by the sediment has been seldom addressed. In the present experimental study, artificial sediment was incubated to simulate the natural organic diagenesis process and hence investigate the influence of organic diagenesis on the adsorption of tetracyclines (TCs) by marine sediment. During a period of 4 months of incubation, SOM initially added into the sediment underwent biodegradation and diagenesis. The results showed an early decrease in TC adsorption by the sediment, which was likely caused by the competition between the microbial organic products and TC molecules for the adsorption sites. Afterward, TC adsorption by the sediment increased significantly, which was mainly due to the accumulation of condensed SOM. The experimental results indicate the interactions between TCs and the sediment during the dynamic process of SOM diagenesis. Moreover, the remaining SOM is shown to have an increasing affinity with the antibiotics.


2021 ◽  
Author(s):  
◽  
Enock Rotich

<p>The Re-Os radiogenic isotope system has over the past three decades been successfully applied to organic-rich sedimentary rocks and oils as a geochronometer and geochemical tracer. The Re-Os geochronometer has provided a direct way of constraining the depositional age of organic-rich sediments as well as the timing of oil generation events. Osmium isotopic compositions have further been utilised in understanding past climatic, oceanographic and geological events recorded in sediments, and in correlating oils to their source. Thus far, however, Re-Os studies of organic-rich sediments have mainly focused on marine black shales where Re and Os are primarily sourced from seawater. The work presented in this thesis seeks to investigate factors controlling Re-Os systematics and potential for geochronology in a range of fluvio-deltaic coaly rocks and terrestrial organic matter-dominated marine sediments, and associated oils from New Zealand’s Taranaki and East Coast basins. The Re-Os data presented here yield the first radiometric age for the late Paleocene Waipawa Formation (57.5 ± 3.5 Ma), a marine sedimentary unit that was formed by episodic input of large amounts of terrestrial woody plant matter resulting in high average sedimentation rates of up to ~10.6 cm/ky. This age is consistent with available biostratigraphic age determinations. The formation possesses Re (38.9 ± 17.6 ppb) and Os (526 ± 75.8 ppt) concentrations similar to those found in typical marine sediments containing amorphous organic matter deposited under much lower sedimentation rates. This indicates that organic matter type and sedimentation rate may not play a significant role in sequestration of these elements in organic-rich sediments. Unlike the Waipawa Formation, coals and coaly mudstones with varying degrees of marine influence (purely terrestrial to strongly marine-influenced) from the Rakopi, North Cape, Farewell and Mangahewa formations record low average Re (0.37 ± 0.25 ppb) and Os (24.5 ± 11.9 ppt) concentrations. These concentrations are up to two orders of magnitude lower than those of similarly marine-influenced coals from the Matewan coalbed, USA, suggesting that Re and Os enrichment in coals does not simply correlate with the level of marine influence; the timing and nature of the marine influence, as well as chelation ability of organic-rich sediments, are equally important. The initial 187Os/188Os (Osi) values for the Waipawa (~0.28) and underlying Whangai (~0.36) formations are broadly similar to those reported for coeval pelagic sediments from the central Pacific Ocean, further constraining the low-resolution marine 187Os/188Os record of the Paleocene. A broad correlation between this record and global temperature (δ18O and TEX86) and carbon isotope (δ13C) records is observed from the middle Paleocene to early Eocene, which is inferred to reflect climate-modulated changes in continental weathering patterns. Unlike the marine sediments, significant variations are noted in the Osi of the Taranaki Basin coaly rocks. These are linked to depositional and diagenetic conditions, degree of water connectivity with the open ocean, and sediment source. The large variations in Osi values combined with small ranges in 187Re/188Os ratios and relatively young ages are considered as factors that hindered development of Re-Os isochrons in these rocks. Crude oils sourced from the Taranaki coals and coaly mudstones also record low average Re (0.31 ± 0.09 ppb) and Os (14 ± 7.6 ppt) concentrations and have 187Re/188Os and 187Os/188Os ratios that do not correlate on an isochron diagram. The lack of an isochron fit for these oils is mainly attributed to a large variation in Osi values (0.47-1.14) resulting from the heterogeneous nature of their potential Rakopi and North Cape coaly source rocks and a lengthy (20 Myr) oil generation event. These Osi values, however, overlap with 187Os/188Os values for the potential source rocks at the time (ca.10 Ma) of oil generation (0.38-1.26), suggesting that Os isotopes may be utilised in tracing these oils. Crude oils that have potentially been sourced from the Waipawa and Whangai formations record much higher Re (2.86 ± 1.92 ppb) and Os (166 ± 142 ppt) concentrations than the coaly-sourced oils, and show Os isotopic compositions that either correlate with those of their potential source rocks (e.g., oil Osi = ~0.63 compared with Waipawa Formation 187Os/188Os = 0.48–0.68 at time of oil generation) or differ due to likely secondary alteration processes within the reservoir such as thermochemical sulfate reduction (TSR).</p>


2019 ◽  
Vol 11 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Wrya J. Mamaseni ◽  
Srood F Naqshabandi ◽  
Falah Kh. Al-Jaboury

Abstract In this study collected samples of Chia Gara Formation in Atrush, Shaikhan and Sarsang oilfields are used to geochemical characteristics of organic matter in this formation. This determination was based on Rock-Eval pyrolysis and Biomarker analyses. The Chia Gara Formation can be considered as good to excellent source rock; it’s TOC content ranges from 1.14-8.5wt% with an average of 1.85%, 3.91%, and 6.94% in Atush-1, Mangesh-1 and Shaikhan-8 wells respectively. The samples of Chia Gara Formation contain kerogen type II. These properties are considered optimal for oil generation. The low oxygen index (OI) and pristane/phytane (Pr/Ph) ratios (Average 20.73, 0.61 respectively) and high hydrogen index (HI) (average 637.6) indicate that the formation was deposited under anoxic condition. According to regular sterane (C27%, C28%, C29%) and terpanes ratios (C29/C30, C31/C30 hopane), the formation was deposited in marine environment. The average value of the Carbon Preference Index (CPI) is one with Tmax values of more than 430 ºC; these indicate peak oil window for the selected samples. Overall, the 20S/(20S+20R), ββ/(ββ+αα)C29 steranes and 22R/(22R+22S)C32homohopane, with Ts/ (Ts+Tm), and moretane/ hopane ratios point to a mature organic matter and to the ability of the formation to generate oil.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4778 ◽  
Author(s):  
Wentong He ◽  
Youhong Sun ◽  
Wei Guo ◽  
Xuanlong Shan ◽  
Siyuan Su ◽  
...  

The Cretaceous Era has always been a focus of geologic and palaeoenvironmental studies. Previous researchers believed that the impact of the global carbon cycle represents significant short-term global biogeochemical fluctuations, leading to the formation of a large number of organic rich sediments in the marine environment. During the Turonian, a large number of organic-rich oil shales were deposited in the lakes of the Songliao Basin in the Qingshankou Formation. How the depositional environment affected the formation of oil shales in continental lakes and the characteristics of these oil shales remain controversial. In this paper, through sampling of Qingshankou Formation strata, various testing methods are used to provide a variety of new data to study the characteristics of oil shales and palaeoenvironment evolution history in the Songliao Basin. The research of the sediments in the Qingshankou Formation in the Fuyu oilfield, Songliao Basin, via result analysis revealed that the oil shales possess an excellent oil-generation potential with moderate-high total organic carbon (TOC) levels (0.58–9.43%), high hydrogen index (HI) values (265–959 mg hydrocarbons (HC)/g TOC), high extractable organic matter (EOM) levels (2.50–6.96 mg/g TOC) and high hydrocarbon fractions (48–89%). The sources of the organic matter were mainly zooplankton, red algae and higher plants (including marine organisms). The aqueous palaeoenvironment of the Qingshankou Formation was a saline water environment with a high sulfate concentration, which promoted an increase in nutrients and stratification of the water density in the lake basin. Oxygen consumption in the bottom water layer promoted the accumulation and burial of high-abundance organic matter, thus forming the high-quality oil shales in the Qingshankou Formation. The global carbon cycle, warm-humid palaeoclimate, dynamic local biogeochemical cycling and relative passive tectonism were the most likely reasons for the TOC increase and negative δ13Corg deviation.


1994 ◽  
Vol 34 (1) ◽  
pp. 279 ◽  
Author(s):  
Dennis Taylor ◽  
Aleksai E. Kontorovich ◽  
Andrei I. Larichev ◽  
Miryam Glikson

Organic rich shale units ranging up to 350 m in thickness with total organic carbon (TOC) values generally between one and ten per cent are present at several stratigraphic levels in the upper part of the Carpentarian Roper Group. Considerable variation in depositional environment is suggested by large differences in carbon:sulphur ratios and trace metal contents at different stratigraphic levels, but all of the preserved organic matter appears to be algal-sourced and hydrogen-rich. Conventional Rock-Eval pyrolysis indicates that a type I-II kerogen is present throughout.The elemental chemistry of this kerogen, shows a unique chemical evolution pathway on the ternary C:H:ONS diagram which differs from standard pathways followed by younger kerogens, suggesting that the maturation histories of Proterozoic basins may differ significantly from those of younger oil and gas producing basins. Extractable organic matter (EOM) from Roper Group source rocks shows a chemical evolution from polar rich to saturate rich with increasing maturity. Alginite reflectance increases in stepwise fashion through the zone of oil and gas generation, and then increases rapidly at higher levels of maturation. The increase in alginite reflectance with depth or proximity to sill contacts is lognormal.The area explored by Pacific Oil and Gas includes a northern area where the Velkerri Formation is within the zone of peak oil generation and the Kyalla Member is immature, and a southern area, the Beetaloo sub-basin, where the zone of peak oil generation is within the Kyalla Member. Most oil generation within the basin followed significant folding and faulting of the Roper Group.


Sign in / Sign up

Export Citation Format

Share Document