Energy Efficiency and Co2 Emissions of Road Transportation: Comparative Analysis of Technologies and Fuels

2002 ◽  
Vol 13 (4-5) ◽  
pp. 631-646 ◽  
Author(s):  
Pierre Advenier ◽  
Pierre Boisson ◽  
Claude Delarue ◽  
André Douaud ◽  
Claude Girard ◽  
...  
2019 ◽  
Vol 11 (2) ◽  
pp. 475 ◽  
Author(s):  
Na Wang ◽  
Yongrok Choi

This paper presents a comparative analysis of the technology gap, energy efficiency, and CO2 emission performance of the agglomerated cities in Eastern and Central China and South Korea under economic heterogeneity. The potential reductions of energy and CO2 emission are estimated from agglomerated city perspectives. The global meta-frontier non-radial direction distance function is used to conduct an empirical analysis of agglomerated cities among Eastern, Central China and South Korea. The results show the potential reduction of 7.58 billion tons of CO2 emissions in Korea and another potential reduction of 1930.62 toe energy for the research period in China, if Korea and China proactively collaborate with each other. The empirical results conclude several unique findings and their implications. First, there are significant differences between the Chinese and Korean cities, in energy efficiency, CO2 emission performance, and meta-technology gaps. Korean cities play a leading role at benchmarking efficiency level with meta-frontier technology. Second, there is no significant difference between total-factor and single-factor performance indexes in the Korean cities, because South Korea requires large capital stocks to replace energy in the production process. However, the opposite is true for Eastern and Central China cities. Finally, there is huge potential for the Chinese cities to reduce energy and CO2 emissions by “catching up” internally as well as by the collaborative efforts with Korean cities.


2020 ◽  
Author(s):  
Tomas Čepaitis ◽  
Sergejus Lebedevas

CO2 emissions from international shipping could increase between 50-250% by 2050 year. The EEDI (Energy Efficiency Design Index) is a key requirement for regulating CO2 emissions of maritime transport; a requirement was introduced in 2011 by the International Maritime Organization and came into force gradually. In recent studies it was investigated that no other technologies has the potential and reserves compared to Cogeneration systems. The article provides a short review of ship energy efficiency design index improving technologies and cogeneration systems application for maritime transport. A brief comparative analysis of cogeneration cycles is provided also. CO2 emissions from international shipping could increase between 50–250% by 2050 year. The EEDI (Energy Efficiency Design Index) is a key requirement for regulating CO2 emissions of maritime transport; a requirement was introduced in 2011 by the International Maritime Organization and came into force gradually. In recent studies it was investigated that no other technologies have the potential and reserves compared to Cogeneration systems. The article provides a short review of ship energy efficiency design index improving technologies and cogeneration systems application for maritime transport which have direct relation with CO2 emissions. A brief comparative analysis of cogeneration cycles is provided also.


Author(s):  
A.I. Glushchenko ◽  
M.Yu. Serov

В статье рассматривается вопрос совершенствования системы управления параллельно-работающими насосными агрегатами с целью повышения энергоэффективности их работы. Проведено сравнение и выявление недостатков существующих методов решения рассматриваемой проблемы. Предложена идея нового подхода на базе онлайн оптимизации. The problem under consideration is improvement of the energy efficiency of a control system of parallel-running pump units. Known methods used to solve this problem are considered. Their advantages and disadvantages are shown. Finally, the idea of a new approach, which is based on online optimization, is proposed.


2021 ◽  
Vol 13 (15) ◽  
pp. 8237
Author(s):  
István Árpád ◽  
Judit T. Kiss ◽  
Gábor Bellér ◽  
Dénes Kocsis

The regulation of vehicular CO2 emissions determines the permissible emissions of vehicles in units of g CO2/km. However, these values only partially provide adequate information because they characterize only the vehicle but not the emission of the associated energy supply technology system. The energy needed for the motion of vehicles is generated in several ways by the energy industry, depending on how the vehicles are driven. These methods of energy generation consist of different series of energy source conversions, where the last technological step is the vehicle itself, and the result is the motion. In addition, sustainability characterization of vehicles cannot be determined by the vehicle’s CO2 emissions alone because it is a more complex notion. The new approach investigates the entire energy technology system associated with the generation of motion, which of course includes the vehicle. The total CO2 emissions and the resulting energy efficiency have been determined. For this, it was necessary to systematize (collect) the energy supply technology lines of the vehicles. The emission results are not given in g CO2/km but in g CO2/J, which is defined in the paper. This new method is complementary to the European Union regulative one, but it allows more complex evaluations of sustainability. The calculations were performed based on Hungarian data. Finally, using the resulting energy efficiency values, the emission results were evaluated by constructing a sustainability matrix similar to the risk matrix. If only the vehicle is investigated, low CO2 emissions can be achieved with vehicles using internal combustion engines. However, taking into consideration present technologies, in terms of sustainability, the spread of electric-only vehicles using renewable energies can result in improvement in the future. This proposal was supported by the combined analysis of the energy-specific CO2 emissions and the energy efficiency of vehicles with different power-driven systems.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4209
Author(s):  
Rita Remeikienė ◽  
Ligita Gasparėnienė ◽  
Aleksandra Fedajev ◽  
Marek Szarucki ◽  
Marija Đekić ◽  
...  

The main goal of setting energy efficiency priorities is to find ways to reduce energy consumption without harming consumers and the environment. The renovation of buildings can be considered one of the main aspects of energy efficiency in the European Union (EU). In the EU, only 5% of the renovation projects have been able to yield energy-saving at the deep renovation level. No other study has thus far ranked the EU member states according to achieved results in terms of increased usage in renewable sources, a decrease in energy usage and import, and reduction in harmful gas emissions due to energy usage. The main purpose of this article is to perform a comparative analysis of EU economies according to selected indicators related to the usage of renewable resources, energy efficiency, and emissions of harmful gasses as a result of energy usage. The methodological contribution of our study is related to developing a complex and robust research method for investment efficiency assessment allowing the study of three groups of indicators related to the usage of renewable energy sources, energy efficiency, and ecological aspects of energy. It was based on the PROMETHEE II method and allows testing it in other time periods, as well as modifying it for research purposes. The EU member states were categorized by such criteria as energy from renewables and biofuels, final energy consumption from renewables and biofuels, gross electricity generation from renewables and biofuels and import dependency, and usage of renewables and biofuels for heating and cooling. The results of energy per unit of Gross Domestic Product (GDP), Greenhouse gasses (GHG) emissions per million inhabitants (ECO2), energy per capita, the share of CO2 emissions from public electricity, and heat production from total CO2 emissions revealed that Latvia, Sweden, Portugal, Croatia, Austria, Lithuania, Romania, Denmark, and Finland are the nine most advanced countries in the area under consideration. In the group of the most advanced countries, energy consumption from renewables and biofuels is higher than the EU average.


2012 ◽  
Vol 524-527 ◽  
pp. 3079-3082
Author(s):  
Di Ping Zhang ◽  
Shuang Shuang He ◽  
Gao Qing Li

Taking Zhejiang province as an example, this paper conducted a comparative analysis on the current situation of the energy consumption structure from the vertical and horizontal using the descriptive statistical method. By calculating some indexes such as energy consumption per unit GDP, energy consumption elasticity coefficient, and so on, the study analyzes and evaluates the present situation, trend and influence factors of energy efficiency. Finally, it puts forward some policy suggestions about the optimization of energy consumption structure and energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document