Analysis on the Climate Suitability and Change Trend of Wengyuan Jiuxian Peach

2022 ◽  
Vol 11 (01) ◽  
pp. 1-6
Author(s):  
爱民 黄
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


Author(s):  
Larissa F. Ferreira ◽  
Christian S. A. Silva-Torres ◽  
Jorge B. Torres ◽  
Robert C. Venette

Abstract Tenuisvalvae notata (Mulsant) (Coccinellidae) is a predatory ladybird beetle native to South America. It specializes in mealybugs prey (Pseudococcidae), but relatively little is known about its ecology. In contrast, the ladybird beetle Cryptolaemus montrouzieri Mulsant (Coccinellidae) is indigenous to Australia and has been introduced to many countries worldwide including Brazil for biological control of mealybugs. The potential impacts of these introductions to native coccinellids have rarely been considered. The software CLIMEX estimated the climate suitability for both species as reflected in the Ecoclimatic Index (EI). Much of South America, Africa, and Australia can be considered climatically suitable for both species, but in most cases, the climate is considerably more favorable for C. montrouzieri than T. notata, especially in South America. The CLIMEX model also suggests seasonal differences in growth conditions (e.g. rainfall and temperature) that could affect the phenology of both species. These models suggest that few locations in South America would be expected to provide T. notata climatic refugia from C. montrouzieri. Although other ecological factors will also be important, such as prey availability, this analysis suggests a strong potential for displacement of a native coccinellid throughout most of its range as a consequence of the invasion by an alien competitor.


2021 ◽  
Vol 310 ◽  
pp. 107293
Author(s):  
Chong Wang ◽  
Xiaoyu Shi ◽  
Jiangang Liu ◽  
Jiongchao Zhao ◽  
Xiaozhi Bo ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 589
Author(s):  
Qilu Chen ◽  
Yutao Shi ◽  
Zhi Zhuang ◽  
Li Weng ◽  
Chengjun Xu ◽  
...  

Heat pipe heat exchangers (HPHEXs) are widely used in various industries. In this paper, a novel model of a liquid–liquid heat pipe heat exchanger in a countercurrent manner is established by considering the evaporation and condensation thermal resistances inside the heat pipes (HPs). The discrete method is added to the HPHEX model to determine the thermal resistances of the HPs and the temperature change trend of the heat transfer fluid in the HPHEX. The established model is verified by the HPHEX structure and experimental data in the existing literature and demonstrates numerical results that agree with the experimental data to within a 5% error. With the current model, the investigation compares the effectiveness and minimum vapor temperature of the HPHEX with three types of HP diameters, different mass flow rates, and different H* values. For HPs with a diameter of 36 mm, the effectiveness of each is improved by about 0.018 to 0.029 compared to HPs with a diameter of 28 mm. The results show that the current model can predict the temperature change trend of the HPHEX well; in addition, the effects of different structures on the effectiveness and minimum vapor temperature are obtained, which improve the performance of the HPHEX.


2014 ◽  
Vol 641-642 ◽  
pp. 80-83
Author(s):  
Jia Zhong Zheng ◽  
Mei Zhu ◽  
Zheng Long Wang

The artical is based on the investigation of the basis of the status quo of Zhuxianzhuang and Luling coal mining subsidence area in Anhui province Suzhou city(hereinafter referred to as the "Zhu Lu subsidence area"), a preliminary analysis of the dynamic change trend of detention space in Zhu Lu subsidence area, and based on the hysteresis storage conditions of subsidence area, use the flood routing model to simulate the hysteresis effect of storage at different subsidence scenarios of different frequency flood. Finally, using the experience type channel evolution model and peak delay routing model further revealed storage effect on flood process of Zhu Lu subsidence area.


Sign in / Sign up

Export Citation Format

Share Document