scholarly journals Monitoring land use changes and soil degradation using spot and temporal aerial photograph data - the case of Vathy basin (Kalymnos island - Dodecanese Greece)

2018 ◽  
Vol 40 (3) ◽  
pp. 1476
Author(s):  
T. Mimides ◽  
E. Psomiadis ◽  
I. Trikili

The present paper focuses on the usefulness of aerial photographs and satellite data in the multitemporal detection of land use changes, soil degradation and erosion. The study was carried out in the watershed of Vathy in the Kalymnos Island, and the study period spanned from 1960 to 1999. Aerial photographs of two different periods of time and satellite SPOT data were used for this purpose. The synergistic use of a Geographical Information System for the manipulation of the data was the key for the Natural monitoring of the soil erosion and degradation. The results revealed many changes in the cultivations and in the land use of the watershed the last decades. These changes supplemented by village expansion and spatial reduction of natural vegetation led to the acceleration of soil erosion, to the degradation of water supplies and generally to an environmental deterioration of the wider area.

2012 ◽  
Vol 7 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
S. Wijitkosum

Soil erosion has been considered as the primary cause of soil degradation since soil erosion leads to the loss of topsoil and soil organic matters which are essential for the growing of plants. Land use, which relates to land cover, is one of the influential factors that affect soil erosion. In this study, impacts of land use changes on soil erosion in Pa Deng sub-district, adjacent area of Kaeng Krachan National Park, Thailand, were investigated by applying remote sensing technique, geographical information system (GIS) and the Universal Soil Loss Equation (USLE). The study results revealed that land use changes in terms of area size and pattern influenced the soil erosion risk in Pa Deng in the 1990–2010 period. The area with smaller land cover obviously showed the high risk of soil erosion than the larger land cover did.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1234
Author(s):  
Viera Petlušová ◽  
Peter Petluš ◽  
Michal Ševčík ◽  
Juraj Hreško

The water erosion research was carried out in the lowland type of hilly landscape. The aim was to monitor and evaluate the importance of environmental factors (steepness of slope, relief shapes, aspect, slope length, combination slope length (L) and slope (S)—LS factor, types of land use changes) for the development of water erosion. We focused on the identification of areas threatened by erosion by interpreting aerial photographs from several time periods. This was followed by verification of erosion using soil probes. We identified 408.44 ha of areas affected by erosion, and measured the depth of soil and “A” horizons thickness. The environmental factors were modeled in geographical information systems by tools for spatially oriented data. Subsequently, the influence and significance of individual environmental factors were compared, and the probability of erosion was statistically estimated. The decisive factors in the formation of erosive surfaces are the LS factor and the slope. We also consider the factor of the relief shape to be important. The shape did not appear to be very significant as a separately evaluated factor, but all convex parts correlate with the identified erosion surfaces. The susceptibility of erosion related to the aspect of the slopes to the cardinal directions has not been confirmed. Types of land use changes with the most significant relation of erosion were confirmed in areas of strong intensification. We confirmed the importance of factors and land use for the development of erosion processes.


Author(s):  
S. Youneszadeh ◽  
N. Amiri ◽  
P. Pilesjo

The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS) in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST) by using the MODIS Terra (MOD11A2) Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST) could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST) for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST). Furthermore, the Zued (South)-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Ashish Rawat ◽  
M. P. S. Bisht ◽  
Y. P. Sundriyal ◽  
S. Banerjee ◽  
Vidushi Singh

AbstractQuantitative morphometric analysis of Dhanari watershed has been done using remote sensing and Geographical Information System (GIS). The impact of climate, lithology, tectonics, structural antecedents, vegetation cover and land use on hydrological processes is assessed by quantifying geomorphic parameters. The Dhanari River (a tributary of the Bhagirathi River) and its tributaries Dhanpati Gad and Kali Gad forms Dhanari watershed covering 91.8  Km2 area. Several geomorphic aspects viz. linear, areal, relief were computed to comprehend potentials of soil erosion, groundwater, flood vulnerability and the geomorphic response of watershed. LISS-III image is used to generate the Land Use and Land Cover (LULC) map and assess the watershed dynamics. Values of computed hypsometric integral and morphometric parameters viz. drainage density ($$D_{{\text{d}}}$$ D d ), stream frequency ($$F_{{\text{s}}}$$ F s ), stream length ratio ($$L_{{{\text{ur}}}}$$ L ur ), bifurcation ratio ($$R_{{\text{b}}}$$ R b ), rho coefficient (ρ), drainage texture ($$D_{{\text{t}}}$$ D t ), circularity ratio ($$R_{{\text{c}}}$$ R c ), relief ratio ($$R_{{{\text{hl}}}}$$ R hl ), elongation ratio ($$R_{{\text{e}}}$$ R e ), form factor ($$F_{{\text{f}}}$$ F f ), basin shape ($$B_{{\text{s}}}$$ B s ), drainage intensity ($$D_{{\text{i}}}$$ D i ), compactness coefficient ($$C_{{\text{c}}}$$ C c ) and infiltration number ($$I_{{\text{f}}}$$ I f ) have shown a moderate and steady erosion rate, with low groundwater potential and low to moderate flood vulnerability in the watershed. Hypsometry presents a dependable geomorphic parameter to understand the erosion and geomorphic response of a watershed to hydrological processes. Hypsometric integral value (0.51) of Dhanari watershed suggests a mature topography with steady erosion in the watershed.


2020 ◽  
Vol 33 (02) ◽  
pp. 525-538
Author(s):  
Fereshteh Namdar ◽  
Shahla Mahmoudi ◽  
Abazar Esmali Ouri ◽  
Ebrahim Pazira

The intensity of soil erosion to occur in a region depends on multiple factors including climatic conditions, elevation, terrain, soil type, and land use. Among these factors, land use is one of the particular importance as it reflects the outsized role of humans in the exacerbation of erosion condition. This study aimed to investigate the effects of land use changes on soil erosion in Qaresu watershed, using Remote Sensing (RS) and Geographical Information System (GIS) techniques, a watershed with an area of ​​4370.8 km2 located in the center of Ardabil province, northwest of Iran. For this purpose, the 1985 and 2015 Landsat images captured by TM and OLI-TIRS sensors were used to develop the land use maps of the watershed area using the maximum likelihood method. The erosion zoning maps were then developed by integrating the maps of land use, slope, lithology, distance from roads, distance from streams, precipitation, and soil using the Weighted Linear Combination (WLC) method after an AHP-based weighting stage. The results showed that in the 30-year period from 1985 to 2015, the region has experienced a decrease in the area of forest, dry farming, and rangeland land uses and an increase in the area of land uses defined as urban, barren, irrigated farming, and water cover. In total, dry farming and rangeland were the largest land-uses in the studied area. According to the developed erosion zoning maps, in 1985, 14.4% and 36.84%, and in 2015, 15.64% and 32.3% of the studied area belonged to high and very high risk zones in terms of erosion potential, respectively. In defined two periods, high risk and very high risk zones were mostly positioned over dry and irrigated farmlands.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 673
Author(s):  
Dario Gioia ◽  
Antonio Minervino Amodio ◽  
Agata Maggio ◽  
Canio Alfieri Sabia

Soil erosion is one of the major natural risk factors for developing high-value crops and an accurate estimation of spatial distribution and rates of soil degradation can be crucial to prevent crop degradation. In this paper, we use comparisons between high-resolution DEMs and soil erosion models to uncover the short-term landscape evolution of hazelnut crop yields, which are affected by incipient processes of rill development. Maps of rill initiation and evolution were extracted from the analysis of UAV-based multitemporal DEMs and the application of soil erosion models. A comparison between such a short-term analysis and historical orthophotos was carried out. Such a comparison shows how the USPED model predicts, very reliably, where linear erosion occurred. In fact, a reliable overlay between the linear erosive forms predicted by the USPED model and those captured by the UAV images can be observed. Furthermore, land use changes from 1974 to 2020 are characterized by a transition from abandoned areas (1974) to areas with high-value cultivation (2020), which has a strong impact on the spatial distribution of erosion processes and landslide occurrence. Such data represent a key tool for both the investigation of the spatial distribution of hot-spots of soil degradation and the identification of effective mitigation practices of soil conservation.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Matheus Supriyanto Rumetna ◽  
Eko Sediyono ◽  
Kristoko Dwi Hartomo

Abstract. Bantul Regency is a part of Yogyakarta Special Province Province which experienced land use changes. This research aims to assess the changes of shape and level of land use, to analyze the pattern of land use changes, and to find the appropriateness of RTRW land use in Bantul District in 2011-2015. Analytical methods are employed including Geoprocessing techniques and analysis of patterns of distribution of land use changes with Spatial Autocorrelation (Global Moran's I). The results of this study of land use in 2011, there are thirty one classifications, while in 2015 there are thirty four classifications. The pattern of distribution of land use change shows that land use change in 2011-2015 has a Complete Spatial Randomness pattern. Land use suitability with the direction of area function at RTRW is 24030,406 Ha (46,995406%) and incompatibility of 27103,115 Ha or equal to 53,004593% of the total area of Bantul Regency.Keywords: Geographical Information System, Land Use, Geoprocessing, Global Moran's I, Bantul Regency. Abstrak. Analisis Perubahan Tata Guna Lahan di Kabupaten Bantul Menggunakan Metode Global Moran’s I. Kabupaten Bantul merupakan bagian dari Provinsi Daerah Istimewa Yogyakarta yang mengalami perubahan tata guna lahan. Penelitian ini bertujuan untuk mengkaji perubahan bentuk dan luas penggunaan lahan, menganalisis pola sebaran perubahan tata guna lahan, serta kesesuaian tata guna lahan terhadap RTRW yang terjadi di Kabupaten Bantul pada tahun 2011-2015. Metode analisis yang digunakan antara lain teknik Geoprocessing serta analisis pola sebaran perubahan tata guna lahan dengan Spatial Autocorrelation (Global Moran’s I). Hasil dari penelitian ini adalah penggunaan tanah pada tahun 2011, terdapat tiga puluh satu klasifikasi, sedangkan pada tahun 2015 terdapat tiga puluh empat klasifikasi. Pola sebaran perubahan tata guna lahan menunjukkan bahwa perubahan tata guna lahan tahun 2011-2015 memiliki pola Complete Spatial Randomness. Kesesuaian tata guna lahan dengan arahan fungsi kawasan pada RTRW adalah seluas 24030,406 Ha atau mencapai 46,995406 % dan ketidaksesuaian seluas 27103,115 Ha atau sebesar 53,004593 % dari total luas wilayah Kabupaten Bantul. Kata Kunci: Sistem Informasi Georafis, tata guna lahan, Geoprocessing, Global Moran’s I, Kabupaten Bantul.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


Sign in / Sign up

Export Citation Format

Share Document