scholarly journals The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved?

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 935 ◽  
Author(s):  
Xu Luo ◽  
Katelyn L. O'Neill ◽  
Kai Huang

Bax and Bak, two functionally similar, pro-apoptotic proteins of the Bcl-2 family, are known as the gateway to apoptosis because of their requisite roles as effectors of mitochondrial outer membrane permeabilization (MOMP), a major step during mitochondria-dependent apoptosis. The mechanism of how cells turn Bax/Bak from inert molecules into fully active and lethal effectors had long been the focal point of a major debate centered around two competing, but not mutually exclusive, models: direct activation and indirect activation. After intensive research efforts for over two decades, it is now widely accepted that to initiate apoptosis, some of the BH3-only proteins, a subclass of the Bcl-2 family, directly engage Bax/Bak to trigger their conformational transformation and activation. However, a series of recent discoveries, using previously unavailable CRISPR-engineered cell systems, challenge the basic premise that undergirds the consensus and provide evidence for a novel and surprisingly simple model of Bax/Bak activation: the membrane (lipids)-mediated spontaneous model. This review will discuss the evidence, rationale, significance, and implications of this new model.

2009 ◽  
Vol 20 (8) ◽  
pp. 2276-2285 ◽  
Author(s):  
Blanca Schafer ◽  
Joel Quispe ◽  
Vineet Choudhary ◽  
Jerry E. Chipuk ◽  
Teddy G. Ajero ◽  
...  

Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin.


2016 ◽  
Vol 50 (2) ◽  
pp. 244-263
Author(s):  
Jeffrey Surovell

In their assessments during the 1960s and 1970s of the state of affairs of Third World “revolutionary democracies” and nations that had taken the “non-capitalist road to development,” the Soviets employed a mode of analysis based on the “correlation of forces.” Given the seeming successes of these “revolutionary democracies” and the appearance of new ones, Moscow was clearly heartened by the apparent tilt in favor of the Soviets and of “progressive” humanity more generally. These apparently positive trends were reflected in Soviet perspectives and policies on the Third World, which focused confidently on such “progressive” regimes. Nonetheless, so-called “reactionary” regimes continued to be a thorn in the side of Soviet policy makers. This study offers a fresh examination of the Soviet analyses of, and policies towards three “reactionary” Third-World regimes: the military dictatorship in Brazil, the Pinochet dictatorship of Chile, and Iran during the reign of the Shah. The article reveals that Soviet decision makers and analysts identified the state sector as the central factor in the “progressive” development of the Third World. Hence the state sector became the focal point for their analyses and the touchstone for Soviet policies; the promotion of the state sector was regarded as a key to the Soviet objective of promoting the “genuine independence” of Third World countries from imperialist domination.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e48571 ◽  
Author(s):  
António Rego ◽  
Margarida Costa ◽  
Susana Rodrigues Chaves ◽  
Nabil Matmati ◽  
Helena Pereira ◽  
...  

1972 ◽  
Vol 16 ◽  
pp. 251-259 ◽  
Author(s):  
K. Das Gupta ◽  
Herbert Welch ◽  
P.F. Gott ◽  
John F. Priest ◽  
Sunny Cheng ◽  
...  

AbstractThree novel methods of x-ray spectrometry have been developed in recent years at Texas Tech University. These are:1. Three crystal spectrometer2. Two curved crystal spectrometer3. Spherically bent crystal spectrometer.In this paper the new design features, and experimental results will be discussed to indicate the usefulness of the new instruments. The three crystal spectrometer is a modified two crystal instrument. A third crystal is used to analyze the output of the two crystal spectrometer. The first two crystals are operated as a standard two crystal spectrometer. The third crystal is swept through the spectrum transmitted by the first two crystals for each setting of the first two crystals. The peak intensity of the third crystal sweep corresponds to the energy setting of the two crystal spectrometer, and is the intensity used to plot the spectral lines. The two curved crystal spectrometer utilizes two transmission spectrographs with radii having a 2:1 ratio in series, the crystal with the smaller radius being set so that its focal point falls on the Rowland circle of the larger radius crystal, This instrument has a very low background intensity and is suitable for precision scattering and diffraetion work. The spherically bent crystal spectrometer makes use of high light gathering power and high orders of reflection to allow high resolution studies of weak spectral lines. It also has the advantage of ease of alignment and operation.


2010 ◽  
Vol 47 ◽  
pp. 99-114 ◽  
Author(s):  
Melissa J. Parsons ◽  
Douglas R. Green

Apoptosis can be thought of as a signalling cascade that results in the death of the cell. Properly executed apoptosis is critically important for both development and homoeostasis of most animals. Accordingly, defects in apoptosis can contribute to the development of autoimmune disorders, neurological diseases and cancer. Broadly speaking, there are two main pathways by which a cell can engage apoptosis: the extrinsic apoptotic pathway and the intrinsic apoptotic pathway. At the centre of the intrinsic apoptotic signalling pathway lies the mitochondrion, which, in addition to its role as the bioenergetic centre of the cell, is also the cell’s reservoir of pro-death factors which reside in the mitochondrial IMS (intermembrane space). During intrinsic apoptosis, pores are formed in the OMM (outer mitochondrial membrane) of the mitochondria in a process termed MOMP (mitochondrial outer membrane permeabilization). This allows for the release of IMS proteins; once released during MOMP, some IMS proteins, notably cytochrome c and Smac/DIABLO (Second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI), promote caspase activation and subsequent cleavage of structural and regulatory proteins in the cytoplasm and the nucleus, leading to the demise of the cell. MOMP is achieved through the co-ordinated actions of pro-apoptotic members and inhibited by anti-apoptotic members of the Bcl-2 family of proteins. Other aspects of mitochondrial physiology, such as mitochondrial bioenergetics and dynamics, are also involved in processes of cell death that proceed through the mitochondria. Proper regulation of these mitochondrial functions is vitally important for the life and death of the cell and for the organism as a whole.


2007 ◽  
Vol 81 (14) ◽  
pp. 7504-7516 ◽  
Author(s):  
Arnaud Autret ◽  
Sandra Martin-Latil ◽  
Laurence Mousson ◽  
Aurélie Wirotius ◽  
Frédéric Petit ◽  
...  

ABSTRACT Poliovirus (PV) is the causal agent of paralytic poliomyelitis, a disease that involves the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through an apoptotic process. However, mechanisms by which PV induces cell death in neuronal cells remain unclear. Here, we demonstrate that PV infection of neuronal IMR5 cells induces cytochrome c release from mitochondria and loss of mitochondrial transmembrane potential, both of which are evidence of mitochondrial outer membrane permeabilization. PV infection also activates Bax, a proapoptotic member of the Bcl-2 family; this activation involves its conformational change and its redistribution from the cytosol to mitochondria. Neutralization of Bax by vMIA protein expression prevents cytochrome c release, consistent with a contribution of PV-induced Bax activation to mitochondrial outer membrane permeabilization. Interestingly, we also found that c-Jun NH2-terminal kinase (JNK) is activated soon after PV infection and that the PV-cell receptor interaction alone is sufficient to induce JNK activation. Moreover, the pharmacological inhibition of JNK by SP600125 inhibits Bax activation and cytochrome c release. This is, to our knowledge, the first demonstration of JNK-mediated Bax-dependent apoptosis in PV-infected cells. Our findings contribute to our understanding of poliomyelitis pathogenesis at the cellular level.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Anthony Letai ◽  
Matthew S. Davids ◽  
Triona Ni Chonghaile ◽  
Jing Deng ◽  
Luv Patel

Abstract Many, perhaps most, cancer chemotherapy agents kill cancer cells via the mitochondrial pathway of apoptosis that is controlled by the Bcl-2 family of proteins. Bcl-2 family proteins regulate commitment to cell death by controlling mitochondrial outer membrane permeabilization (MOMP). To better understand how cancer cells commit to apoptosis, and what drugs might make them commit to apoptosis, we have studied perturbing mitochondria with BH3 peptides that are derived from pro-death Bcl-2 family proteins. Using this provocative test, which we call BH3 profiling, we are able to measure how close a cell is to the threshold of apoptosis, a property we call “priming”. Priming corresponds to sensitivity to chemotherapy. Moreover, BH3 profiling can be used to detect dependence on Bcl-2 and Bcl-xL for survival, which predicts cytotoxic response to small molecule antagonists such as ABT-199 and ABT-263. In acute lymphoblastic leukemia, we find that dependence on either Bcl-2 or Bcl-xL varies from case to case, with very important consequences for sensitivity to ABT-199 and ABT-263. In chronic lymphocytic leukemia, ABT-199 has already demonstrated significant clinical activity that corresponds to its on-target activity in mitochondria in vitro. We have been testing how this in vitro mitochondrial activity in BH3 profiling assays might be translated into a useful clinical predictive biomarker. Finally, we can measure how short term incubation with many kinds of drugs, including targeted pathway inhibitors, can increase cancer cell priming, including for primary lymphoid malignancy cells. This short term increase in priming predicts subsequent cancer cell death, including in clinical treatment. We call this method “Dynamic BH3 Profiling” and are exploring how it might best be utilized in the clinic. Disclosures: Letai: Dana-Farber Cancer Institute: Patents & Royalties; AbbVie: Consultancy.


2002 ◽  
Vol 159 (6) ◽  
pp. 923-929 ◽  
Author(s):  
Damien Arnoult ◽  
Philippe Parone ◽  
Jean-Claude Martinou ◽  
Bruno Antonsson ◽  
Jérôme Estaquier ◽  
...  

Mitochondrial outer membrane permeabilization by proapoptotic Bcl-2 family proteins, such as Bax, plays a crucial role in apoptosis induction. However, whether this only causes the intracytosolic release of inducers of caspase-dependent death, such as cytochrome c, or also of caspase-independent death, such as apoptosis-inducing factor (AIF) remains unknown. Here, we show that on isolated mitochondria, Bax causes the release of cytochrome c, but not of AIF, and the association of AIF with the mitochondrial inner membrane provides a simple explanation for its lack of release upon Bax-mediated outer membrane permeabilization. In cells overexpressing Bax or treated either with the Bax- or Bak-dependent proapoptotic drugs staurosporine or actinomycin D, or with hydrogen peroxide, caspase inhibitors did not affect the intracytosolic translocation of cytochrome c, but prevented that of AIF. These results provide a paradigm for mitochondria-dependent death pathways in which AIF cannot substitute for caspase executioners because its intracytosolic release occurs downstream of that of cytochrome c.


Sign in / Sign up

Export Citation Format

Share Document