scholarly journals The diagnostic yield of whole exome sequencing as a first approach in consanguineous Omani renal ciliopathy syndrome patients

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 207
Author(s):  
Intisar Al Alawi ◽  
Mohammed Al Riyami ◽  
Miguel Barroso-Gil ◽  
Laura Powell ◽  
Eric Olinger ◽  
...  

Background: Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice. In the investigation of inherited cystic kidney disease and renal ciliopathy syndromes, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. The yield of WES critically depends on the characteristics of the patient population. Methods: In this study, we selected 8 unrelated Omani children, presenting with renal ciliopathy syndromes with a positive family history and originating from consanguineous families. We performed WES in affected children to determine the genetic cause of disease and to test the yield of this approach, coupled with homozygosity mapping, in this highly selected population. DNA library construction and WES was carried out using SureSelect Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For variants filtering and annotation Qiagen Variant Ingenuity tool was used. Nexus copy number software from BioDiscovery was used for evaluation of copy number variants and whole gene deletions. Patient and parental DNA was used to confirm mutations and the segregation of alleles using Sanger sequencing. Results: Genetic analysis identified 4 potential causative homozygous variants each confirmed by Sanger sequencing in 4 clinically relevant ciliopathy syndrome genes, (TMEM231, TMEM138, WDR19 and BBS9), leading to an overall diagnostic yield of 50%. Conclusions: WES coupled with homozygosity mapping provided a diagnostic yield of 50% in this selected population. This genetic approach needs to be embedded into clinical practise to allow confirmation of clinical diagnosis, to inform genetic screening as well as family planning decisions. Half of the patients remain without diagnosis highlighting the technical and interpretational hurdles that need to be overcome in the future.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 207
Author(s):  
Intisar Al Alawi ◽  
Mohammed Al Riyami ◽  
Miguel Barroso-Gil ◽  
Laura Powell ◽  
Eric Olinger ◽  
...  

Background: Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice. In the investigation of inherited cystic kidney disease and renal ciliopathy syndromes, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. The yield of WES critically depends on the characteristics of the patient population. Methods: In this study, we selected 8 unrelated Omani children, presenting with renal ciliopathy syndromes with a positive family history and originating from consanguineous families. We performed WES in affected children to determine the genetic cause of disease and to test the yield of this approach, coupled with homozygosity mapping, in this highly selected population. DNA library construction and WES was carried out using SureSelect Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For variants filtering and annotation Qiagen Variant Ingenuity tool was used. Nexus copy number software from BioDiscovery was used for evaluation of copy number variants and whole gene deletions. Patient and parental DNA was used to confirm mutations and the segregation of alleles using Sanger sequencing. Results: Genetic analysis identified 4 potential causative homozygous variants each confirmed by Sanger sequencing in 4 clinically relevant ciliopathy syndrome genes, (TMEM231, TMEM138, WDR19 and BBS9), leading to an overall diagnostic yield of 50%. Conclusions: WES coupled with homozygosity mapping provided a diagnostic yield of 50% in this selected population. This genetic approach needs to be embedded into clinical practise to allow confirmation of clinical diagnosis, to inform genetic screening as well as family planning decisions. Half of the patients remain without diagnosis highlighting the technical and interpretational hurdles that need to be overcome in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Xiang ◽  
Yang Ding ◽  
Fei Yang ◽  
Ang Gao ◽  
Wei Zhang ◽  
...  

Background: Whole-exome sequencing (WES) has been recommended as a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders (NDDs). We aimed to identify the genetic causes of 17 children with developmental delay (DD) and/or intellectual disability (ID).Methods: WES and exome-based copy number variation (CNV) analysis were performed for 17 patients with unexplained DD/ID.Results: Single-nucleotide variant (SNV)/small insertion or deletion (Indel) analysis and exome-based CNV calling yielded an overall diagnostic rate of 58.8% (10/17), of which diagnostic SNVs/Indels accounted for 41.2% (7/17) and diagnostic CNVs accounted for 17.6% (3/17).Conclusion: Our findings expand the known mutation spectrum of genes related to DD/ID and indicate that exome-based CNV analysis could improve the diagnostic yield of patients with DD/ID.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Robert Meyer ◽  
Matthias Begemann ◽  
Christian Thomas Hübner ◽  
Daniela Dey ◽  
Alma Kuechler ◽  
...  

Abstract Background Silver-Russell syndrome (SRS) is an imprinting disorder which is characterised by severe primordial growth retardation, relative macrocephaly and a typical facial gestalt. The clinical heterogeneity of SRS is reflected by a broad spectrum of molecular changes with hypomethylation in 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat) as the most frequent findings. Monogenetic causes are rare, but a clinical overlap with numerous other disorders has been reported. However, a comprehensive overview on the contribution of mutations in differential diagnostic genes to phenotypes reminiscent to SRS is missing due to the lack of appropriate tests. With the implementation of next generation sequencing (NGS) tools this limitation can now be circumvented. Main body We analysed 75 patients referred for molecular testing for SRS by a NGS-based multigene panel, whole exome sequencing (WES), and trio-based WES. In 21/75 patients a disease-causing variant could be identified among them variants in known SRS genes (IGF2, PLAG1, HMGA2). Several patients carried variants in genes which have not yet been considered as differential diagnoses of SRS. Conclusions WES approaches significantly increase the diagnostic yield in patients referred for SRS testing. Several of the identified monogenetic disorders have a major impact on clinical management and genetic counseling.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Xu ◽  
Yong-Biao Zhang ◽  
Li-Jun Liang ◽  
Jia-Li Tian ◽  
Jin-Ming Lin ◽  
...  

Abstract Background Hereditary hemorrhagic telangiectasia (HHT) is a disease characterized by arteriovenous malformations in the skin and mucous membranes. We enrolled a large pedigree comprising 32 living members, and screened for mutations responsible for HHT. Methods We performed whole-exome sequencing to identify novel mutations in the pedigree after excluding three previously reported HHT-related genes using Sanger sequencing. We then performed in silico functional analysis of candidate mutations that were obtained using a variant filtering strategy to identify mutations responsible for HHT. Results After screening the HHT-related genes, activin A receptor-like type 1 (ACVRL1), endoglin (ENG), and SMAD family member 4 (SMAD4), we did not detect any co-segregated mutations in this pedigree. Whole-exome sequencing analysis of 7 members and Sanger sequencing analysis of 16 additional members identified a mutation (c.784A > G) in the NSF attachment protein gamma (NAPG) gene that co-segregated with the disease. Functional prediction showed that the mutation was deleterious and might change the conformational stability of the NAPG protein. Conclusions NAPG c.784A > G may potentially lead to HHT. These results expand the current understanding of the genetic contributions to HHT pathogenesis.


Author(s):  
Juan Chen ◽  
Yan Li ◽  
Jianlei Wu ◽  
Yakun Liu ◽  
Shan Kang

Abstract Background Malignant ovarian germ cell tumors (MOGCTs) are rare and heterogeneous ovary tumors. We aimed to identify potential germline mutations and somatic mutations in MOGCTs by whole-exome sequencing. Methods The peripheral blood and tumor samples from these patients were used to identify germline mutations and somatic mutations, respectively. For those genes corresponding to copy number alterations (CNA) deletion and duplication region, functional annotation of was performed. Immunohistochemistry was performed to evaluate the expression of mutated genes corresponding to CNA deletion region. Results In peripheral blood, copy number loss and gain were mostly found in yolk sac tumors (YST). Moreover, POU5F1 was the most significant mutated gene with mutation frequency > 10% in both CNA deletion and duplication region. In addition, strong cytoplasm staining of POU5F1 (corresponding to CNA deletion region) was found in 2 YST and nuclear staining in 2 dysgerminomas (DG) tumor samples. Genes corresponding to CNA deletion region were significantly enriched in the signaling pathway of regulating pluripotency of stem cells. In addition, genes corresponding to CNA duplication region were significantly enriched in the signaling pathways of RIG-I-like receptor, Toll-like receptor, NF-kappa B and Jak–STAT. KRT4, RPL14, PCSK6, PABPC3 and SARM1 mutations were detected in both peripheral blood and tumor samples. Conclusions Identification of potential germline mutations and somatic mutations in MOGCTs may provide a new field in understanding the genetic feature of the rare biological tumor type in the ovary.


2017 ◽  
Vol 176 (5) ◽  
pp. K9-K14 ◽  
Author(s):  
Sandrine Caburet ◽  
Ronit Beck Fruchter ◽  
Bérangère Legois ◽  
Marc Fellous ◽  
Stavit Shalev ◽  
...  

Context PCOS is a heterogeneous condition characterized by hyperandrogenism and chronic anovulation and affects about 10% of women. Its etiology is poorly known, but a dysregulation of gonadotropin secretion is one of its hallmarks. Objective As the etiology of PCOS is unclear, we have performed a genome-wide analysis of a consanguineous family with three sisters diagnosed with PCOS. Methods Whole-exome sequencing and Sanger sequencing confirmation. Results Whole-exome sequencing allowed the detection of the missense variant rs104893836 located in the first coding exon of the GNRHR gene and leading to the p.Gln106Arg (p.Q106R) substitution. Sanger sequencing of all available individuals of the family confirmed that the variant was homozygous in the three affected sisters and heterozygous in both parents. Conclusions This is the first description of a GNRHR gene mutation in patients diagnosed with PCOS. Although we do not exclude a possible interaction of the identified variant with the genetic background and/or the environment, our result suggests that genetic alterations in the hypothalamo–pituitary axis may play role in the pathogenesis of PCOS.


2020 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results: Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions: Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


Sign in / Sign up

Export Citation Format

Share Document