scholarly journals The effects of different levels of Curcuma longa and zinc oxide nanoparticles on the quality traits of thigh and breast meat in broiler chickens

2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Suriya Kumari Ramiah ◽  
Elmutaz Atta Awad ◽  
Nur Izzah Mohd Hemly ◽  
Mahdi Ebrahimi ◽  
Olubodun Joshua ◽  
...  

Abstract This study was conducted to explore the effect of the zinc oxide nanoparticles (ZnONPs) supplement on the regulatory appetite and heat stress (HS) genes in broiler chickens raised under high or normal ambient temperatures. In this study, 240 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 48 battery cages. From day 1, these 48 cages were randomly subjected to four different treatment strategies: Control (wherein, their basal diet included 60 mg/kg of ZnO), ZNONPs 40 (wherein basal diet included 40 mg/kg of ZnONPs), ZnONPs 60 (basal diet included 60 mg/kg of ZnONPs), and ZnONPs 100 (basal diet included 100 mg/kg of ZnONPs). Thereafter, from day 22 to 42, the chickens from each dietary treatment group were subjected to different temperature stresses either normal (23 ± 1 °C constant) or HS (34 ± 1 °C for 6 h/d), which divided them into eight different treatment groups. Our findings revealed that dietary ZnONPs altered the gene expression of cholecystokinin (ileum), heat stress proteins (HSP) 70 (jejunum and ileum), and HSP 90 (duodenum, jejunum, and ileum). The gene expression of ghrelin was affected by the interaction between the ZnONPs concentration and temperature in the duodenum and stomach. More studies are required to elucidate its complex physiological and biochemical functions of the regulation of gene expression within the intestine in heat-stressed broiler chickens.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shiwei Yan ◽  
Fan Wu ◽  
Song Zhou ◽  
Jianhao Yang ◽  
Xianjin Tang ◽  
...  

Abstract Background Rice is particularly effective, compared to other cereals, at accumulating arsenic (As), a nonthreshold, class 1 human carcinogen in shoot and grain. Nano-zinc oxide is gradually used in agricultural production due to its adsorption capacity and as a nutrient element. An experiment was performed to explore the effects of zinc oxide nanoparticles (nZnO) on arsenic (As) toxicity and bioaccumulation in rice. Rice seedlings were treated with different levels of nZnO (0, 10, 20, 50, 100 mg/L) and As (0, and 2 mg/L) for 7 days. Results The research showed that 2 mg/L of As treatment represented a stress condition, which was evidenced by phenotypic images, seedling dry weight, chlorophyll, and antioxidant enzyme activity of rice shoot. The addition of nZnO (10–100 mg/L) enhanced the growth and photosynthesis of rice seedlings. As concentrations in the shoots and roots were decreased by a maximum of 40.7 and 31.6% compared to the control, respectively. Arsenite [As (III)] was the main species in both roots (98.5–99.5%) and shoots (95.0–99.6%) when exposed to different treatments. Phytochelatins (PCs) content up-regulated in the roots induced more As (III)-PC to be complexed and reduced As (III) mobility for transport to shoots by nZnO addition. Conclusion The results confirmed that nZnO could improve rice growth and decrease As accumulation in shoots, and it performs best at a concentration of 100 mg/L.


2021 ◽  
Author(s):  
Shiwei Yan ◽  
Fan Wu ◽  
Song Zhou ◽  
Jianhao Yang ◽  
Xianjin Tang ◽  
...  

Abstract Background: Rice is particularly effective, compared to other cereals, at accumulating arsenic(As), a nonthreshold, class 1 human carcinogen in shoot and grain. Nano-zinc oxide is gradually used in agricultural production due to its adsorption capacity and as a nutrient element. An experiment was performed to explore the effects of zinc oxide nanoparticles (nZnO) on arsenic (As) toxicity and bioaccumulation in rice. Rice seedlings were treated with different levels of nZnO (0, 10, 20, 50, 100 mg/L) and As (0, and 2 mg/L) for seven days. Results:The research showed that 2 mg/L of As treatment represented a stress condition, which was evidenced by phenotypic images, seedling dry weight, chlorophyll, and antioxidant enzyme activity of rice shoot. The addition of nZnO (10-100 mg/L) enhanced the growth and photosynthesis of rice seedlings. As concentrations in the shoots and roots were decreased by a maximum of 40.7% and 31.6% compared to the control, respectively. Arsenite [As(III)] was the main species in both roots (98.5-99.5%) and shoots (95.0-99.6%) when exposed to different treatments. Phytochelatins (PCs) content up-regulated in the roots induced more As(III)-PC complexed and reduced As(III) mobility for transport to shoots by nZnO addition. Conclusion:The results confirmed that nZnO could improve rice growth and decrease As accumulation in shoots, and it performs best at a concentration of 100mg/L.


2016 ◽  
Vol 3 (1) ◽  
pp. 70-74
Author(s):  
P. Ranjith Reddy ◽  
N Jayarambabu ◽  
Anil Kumar Somasai ◽  
K. Venkateswara Rao ◽  
Y Aparna

Sign in / Sign up

Export Citation Format

Share Document