scholarly journals Effect of Refined Surface Domains Walls on the Core Losses Components in GO Silicon Steel at Different Frequencies

2020 ◽  
Vol 137 (5) ◽  
pp. 896-899
Author(s):  
I. Petrshynets ◽  
F. Kováč ◽  
V. Puchý ◽  
J. Füzer ◽  
P. Kollár ◽  
...  
2017 ◽  
Vol 68 (9) ◽  
pp. 2162-2165 ◽  
Author(s):  
Katarzyna Bloch ◽  
Mihail Aurel Titu ◽  
Andrei Victor Sandu

The paper presents the results of structural and microstructural studies for the bulk Fe65Co10Y5B20 and Fe63Co10Y7B20 alloys. All the rods obtained by the injection casting method were fully amorphous. It was found on the basis of analysis of distribution of hyperfine field induction that the samples of Fe65Co10Y5B20 alloy are characterised with greater atomic packing density. Addition of Y to the bulk amorphous Fe65Co10Y5B20 alloy leads to the decrease of the average induction of hyperfine field value. In a strong magnetic field (i.e. greater than 0.4HC), during the magnetization process of the alloys, where irreversible processes take place, the core losses associated with magnetization and de-magnetization were investigated.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1815
Author(s):  
Feng Fang ◽  
Diwen Hou ◽  
Zhilei Wang ◽  
Shangfeng Che ◽  
Yuanxiang Zhang ◽  
...  

Based on conventional hot rolling processes and strip casting processes, Cu precipitation strengthening is used to improve the strength of non-oriented silicon steel in order to meet the requirements of high-speed driving motors of electric vehicles. Microstructure evolution was studied, and the effects of Cu precipitates on magnetic and mechanical properties are discussed. Compared with conventional processes, non-oriented silicon steel prepared by strip casting exhibited advantages with regard to microstructure optimization with coarse grain and {100} texture. Two-stage rolling processes were more beneficial for uniform microstructure, coarse grains and improved texture. The high magnetic induction B50 of 1.762 T and low core losses with P1.5/50, P1.0/400 and P1.0/1000 of 1.93, 11.63 and 44.87 W/kg, respectively, were obtained in 0.20 mm sheets in strip casting. Cu precipitates significantly improved yield strength over ~120 MPa without deteriorating magnetic properties both in conventional process and strip casting. In the peak stage aged at 550 °C for 120 min, Cu precipitates retained bcc structure and were coherent with the matrix, and the yield strength of the 0.20 mm sheet was as high as 501 MPa in strip casting. The main mechanism of precipitation strengthening was attributed to coherency strengthening and modulus strengthening. The results indicated that balanced magnetic and mechanical properties can be achieved in thin-gauge non-oriented silicon steel with Cu addition in strip casting.


2019 ◽  
Vol 55 (1) ◽  
pp. 39-46
Author(s):  
W. Kong ◽  
D.G. Cang

The submerged entry nozzle (SEN) clogging has been happening during continuous casting (or CC for short) for nonoriented silicon steel. To solve the problem, the paper studied a flow rate through SEN, a node attached to one of them, and the impact on the clogging. The results showed that when SEN is clogged seriously, the casting speed has to decrease below the target casting speed and that SEN clogging can be predicted by comparing the actual value and the theoretical one of a casting speed. Al2O3 and its composite inclusions caused the SEN clogging and the addition of Ca can solve SEN clogging during CC of the silicon steel both theoretically and practically. Furthermore, the impact of the addition of Ca on the magnetic properties of the steel were analyzed. The results showed that the core loss and the magnetic induction of the silicon steel decreased by using the addition of Ca, which generated more dissolved Aluminum, and the addition of Ca generated more harmful textures, which reduced the magnetic induction.


Applied laser ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 83-87
Author(s):  
朱虹 Zhu Hong ◽  
郭亮 Guo Liang ◽  
张庆茂 Zhang Qingmao

2010 ◽  
Vol 129-131 ◽  
pp. 1366-1371 ◽  
Author(s):  
S.R. Ning ◽  
Jun Gao ◽  
Y.G. Wang

During the past decade a new class of magnetic materials-amorphous metals, has been under development. This material offers the potential of reducing the core losses of motors dramatically due to its excellent magnetic performance. Thus, the incentive is tremendous to develop cost-competitive motors utilizing amorphous alloys. However, there were some deficiency of a relatively high brittleness and a low stacking factor, which makes it difficult to stamp or cut the material to the shapes that motors required. This paper will briefly review some of the important process technical of magnetic amorphous alloys cores and will describe the results of applying this material in all kind of test motors.


MRS Bulletin ◽  
1998 ◽  
Vol 23 (5) ◽  
pp. 50-56 ◽  
Author(s):  
Nicholas DeCristofaro

On April 13, 1982, the Duke Power Company energized an experimental pad-mount distribution transformer in Hickory, North Carolina. The transformer, manufactured by General Electric, provided electric power to a local residence. That same month, the Georgia Power Company installed a similar transformer, made by Westinghouse Electric, atop a utility pole in Athens, Georgia. It supplied electricity for the exterior lights at the Westinghouse Newton Bridge Road plant. These devices shown in Figure 1 were unique among the nearly 40 million distribution transformers in service in the United States because their magnetic cores were made from an Fe–B–Si amorphous-metal alloy. This new material, produced by Allied-Signal (formerly Allied Chemical), was capable of magnetizing more efficiently than any electrical steel. By replacing grain-oriented silicon steel in the transformer cores, the amorphous metal reduced the core losses of the transformers by 75%.Although distribution transformers are relatively efficient devices, often operating at efficiencies as high as 99% at full load, they lose a significant amount of energy in their use. Because of the number of units in service, coupled with the fact that the core material is continuously magnetized and demagnetized at line frequency, transformers account for the largest portion of the energy losses on electric power distribution systems. It is estimated that over 50 × 109 kWh are dissipated annually in the United States in the form of distribution transformer core losses. At today's average electricity generating cost of $0.035/kWh, that energy is worth over $1,500 million.


Author(s):  
Yaser Atta Yassin ◽  
Ali Nasser Hussain ◽  
Nagham Yassin Ahmed

This paper presents a core losses and performance calculation with different type of steel materials in the core design for three-phase induction motor by using "ANSYS Maxwell" program in order to identify the core material that provides the most effective performance by iron losses reduction. The coefficients of core losses are calculated from the magnetization curve and core Loss curve based on the on steel material databases. Although the difficult to obtain because of the little of existing information. Results show the capability of the proposed Cobalt steel (Hiperco 50) to achieve the significant losses reduction in comparison to the Electrical Steel NGO–AK Steel’s M-19 and Low Carbon Steel-SAE1020.


2021 ◽  
Vol 63 (10) ◽  
pp. 604-609
Author(s):  
Yanxing Xing ◽  
Shaoxiong Zhou ◽  
Wenzhi Chen ◽  
Bangshao Dong ◽  
Yaqiang Dong ◽  
...  

Fe-based amorphous strip (AM strip) is a core material for high-efficiency distribution transformers and contributes to saving energy loss in electricity distribution. The core loss and apparent power for 2605SA1 amorphous strips at power frequency are studied using the Epstein frame method. Longitudinal magnetic field annealing and the influence of measuring modes on test results are investigated in detail. Improved test efficiency and higher accuracy in test results for amorphous ribbons are demonstrated and it is found that the number of strips and the lap joint methods affect the test results greatly. The waveform of the secondary induction voltage becomes sinusoidal with the increase of strip number. The values of core loss and apparent power become stable once the total number of strips is larger than 20. The coefficient of eddy current loss (e) also affects the correction of testing core losses. The test results could be improved at a smaller value of e when the waveform of the secondary induction voltage becomes deformed from sinusoidal due to a lower number of strips (below 20). The measured results were found to be reproducible when the strip number of each layer was one or two. However, the core loss and the apparent power increased along with the increase in the number of strips in each layer. Moreover, demagnetisation showed no effects on the test results when using the Epstein frame method.


Sign in / Sign up

Export Citation Format

Share Document