scholarly journals Dietary Effect of Conjugated Linoleic Acid on Lipid Levels in White Adipose Tissue of Sprague-Dawley Rats

1999 ◽  
Vol 63 (6) ◽  
pp. 1104-1106 ◽  
Author(s):  
Masao YAMASAKI ◽  
Keiko MANSHO ◽  
Hiroko MISHIMA ◽  
Masaaki KASAI ◽  
Michihiro SUGANO ◽  
...  
2001 ◽  
Vol 86 (5) ◽  
pp. 549-555 ◽  
Author(s):  
Hyun S. Park ◽  
Ji H. Ryu ◽  
Yeong L. Ha ◽  
Jung H. Y. Park

One of the objectives of the present study was to investigate whether 1 % conjugated linoleic acid (CLA) in the diet reduced tumour incidence in the colon of 1,2-dimethylhydrazine (DMH)-treated rats. Colon cancer was induced by injecting 6-week-old, male, Sprague–Dawley rats with 15 mg/kg DMH twice per week for 6 weeks. They were fed either 1 % CLA or a control diet ad libitum for 30 weeks. Dietary CLA significantly decreased colon tumour incidence (P<0·05). Our second objective was to investigate whether apoptosis in the colon mucosa of DMH-treated rats was affected by the amount of dietary CLA and whether the changes in apoptosis were related to those in fatty acid-responsive biomarkers. For this purpose, rats were killed after being fed a diet containing 0 %, 0·5 %, 1 % or 1·5 % CLA for 14 weeks. CLA was undetected in the mucosa of rats fed the 0 % CLA diet and increased to 5·9 mg/g phospholipid in rats fed the 0·5 % diet. The apoptotic index estimated by the terminal deoxynucleotidyl transferase-mediated dUTP nick and labelling technique was increased by 251 % and the 1,2-diacylglycerol content was decreased by 57 % in rats fed 0·5 % CLA. No further changes in these variables were observed when CLA in the diet was raised to 1·0 % or 1·5 %. However, dietary CLA decreased mucosal levels of prostaglandin E2, thromboxane B2 and arachidonic acid in a dose-dependent manner. The present data indicate that dietary CLA can inhibit DMH-induced colon carcinogenesis by mechanisms probably involving increased apoptosis.


2012 ◽  
Vol 49 (1) ◽  
pp. 487-493 ◽  
Author(s):  
Rafaela da Silva Marineli ◽  
Anne y Castro Marques ◽  
Cibele Priscila Busch Furlan ◽  
Mário Roberto Maróstica

2006 ◽  
Vol 27 (3) ◽  
pp. 282-294 ◽  
Author(s):  
P. Christopher LaRosa ◽  
Jess Miner ◽  
Yuannan Xia ◽  
You Zhou ◽  
Steve Kachman ◽  
...  

A combined histological and microarray analysis of the white adipose tissue (WAT) of mice fed trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) was performed to better define functional responses. Mice fed t10c12 CLA for 14 days lost 85% of WAT mass, 95% of adipocyte lipid droplet volume, and 15 or 47% of the number of adipocytes and total cells, respectively. Microarray profiling of replicated pools ( n = 2 per day × diet) of control and treated mice ( n = 140) at seven time points after 1–17 days of t10c12 CLA feeding found between 2,682 and 4,216 transcript levels changed by twofold or more. Transcript levels for genes involved in glucose and fatty acid import or biosynthesis were significantly reduced. Highly expressed transcripts for lipases were significantly reduced but still abundant. Increased levels of mRNAs for two key thermogenesis proteins, uncoupling protein 1 and carnitine palmitoyltransferase 1, may have increased energy expenditures. Significant reductions of mRNAs for major adipocyte regulatory factors, including peroxisome proliferator activated receptor-γ, sterol regulatory binding protein 1, CAAT/enhancer binding protein-α, and lipin 1 were correlated with the reduced transcript levels for key metabolic pathways in the WAT. A prolific inflammation response was indicated by the 2- to 100-fold induction of many cytokine transcripts, including those for IL-6, IL-1β, TNF ligands, and CXC family members, and an increased density of macrophages. The mRNA changes suggest that a combination of cell loss, increased energy expenditure, and residual transport of lipids out of the adipocytes may account for the cumulative mass loss observed.


Lipids ◽  
2009 ◽  
Vol 44 (11) ◽  
pp. 975-982 ◽  
Author(s):  
Angela A. Wendel ◽  
Aparna Purushotham ◽  
Li-Fen Liu ◽  
Martha A. Belury

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Wan Shen ◽  
Chia‐Chi Chuang ◽  
Kristina Martinez ◽  
Tanya Reid ◽  
J. Mark Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document