Analysis of damages and defects of the repair and operational unit of the compressor station

2022 ◽  
Vol 14 (4) ◽  
pp. 106-114
Author(s):  
Oksana Turbina ◽  
S. Nikolenko ◽  
Svetlana Sazonova

The need to maintain the technical condition of buildings with a significant service life determines the regularity of their inspection. The paper presents the analysis of the results of the inspection of the building of the repair and operational block of the compressor station. The analysis of the design documentation and the results of the measurement work showed that the construction is a one-story basementless building with dimensions of 54.62x18.74x5.9 m. The performed visual examination showed the presence of damages and defects of the third and fourth categories, which requires certain actions to eliminate them. Visual examination showed the need for instrumental examination. In particular, the need to determine the strength of brickwork and the strength of concrete in structures. The analysis of the results of the instrumental examination showed: the results of testing the wall masonry by the shock pulse method using the ONIKS 2.5 device showed that the compressive strength grade of silicate and ceramic bricks of the walls of the repair and maintenance block corresponds to M100, and the grade of masonry mortar is M50; The results of concrete testing by the non-destructive method of strength control in accordance with GOST 22690-88 with the DigiShmidt 2000 device showed that the class of concrete in terms of compressive strength in reinforced concrete slabs of the covering of the repair and operational block corresponds to B20, and the class of concrete in reinforced concrete beams of the covering corresponds to B25. The verification calculation showed that the strength of the reinforced concrete pavement of the repair and maintenance unit under the full design load acting at the time of the survey was ensured. The analysis showed that the technical condition of the maintenance and operation unit is of limited serviceability. The work provides recommendations for eliminating defects and damages.

2021 ◽  
Vol 15 (1) ◽  
pp. 81-92
Author(s):  
Constantinos B. Demakos ◽  
Constantinos C. Repapis ◽  
Dimitros P. Drivas

Aims: The aim of this paper is to investigate the influence of the volume fraction of fibres, the depth of the beam and the shear span-to-depth ratio on the shear strength of steel fibre reinforced concrete beams. Background: Concrete is a material widely used in structures, as it has high compressive strength and stiffness with low cost manufacturing. However, it presents low tensile strength and ductility. Therefore, through years various materials have been embedded inside it to improve its properties, one of which is steel fibres. Steel fibre reinforced concrete presents improved flexural, tensile, shear and torsional strength and post-cracking ductility. Objective: A better understanding of the shear performance of SFRC could lead to improved behaviour and higher safety of structures subject to high shear forces. Therefore, the influence of steel fibres on shear strength of reinforced concrete beams without transverse reinforcement is experimentally investigated. Methods: Eighteen concrete beams were constructed for this purpose and tested under monotonic four-point bending, six of which were made of plain concrete and twelve of SFRC. Two different aspect ratios of beams, steel fibres volume fractions and shear span-to-depth ratios were selected. Results: During the experimental tests, the ultimate loading, deformation at the mid-span, propagation of cracks and failure mode were detected. From the tests, it was shown that SFRC beams with high volume fractions of fibres exhibited an increased shear capacity. Conclusion: The addition of steel fibres resulted in a slight increase of the compressive strength and a significant increase in the tensile strength of concrete and shear resistance capacity of the beam. Moreover, these beams exhibit a more ductile behaviour. Empirical relations predicting the shear strength capacity of fibre reinforced concrete beams were revised and applied successfully to verify the experimental results obtained in this study.


2020 ◽  
pp. 002199832097373
Author(s):  
Fares Jnaid

This paper investigates the effects of different parameters on the live load carrying capacity of concrete beams reinforced with FRP bars. The author performed a parametric study utilizing an innovative numerical approach to inspect the effects of multiple variables such as reinforcement ratio, concrete compressive strength, span to depth ratio, FRP type, and bar diameter on load carrying capacity of FRP reinforced concrete beams. This study concluded that unless the span to height ratio is smaller than 8, tension-controlled sections are impractical as they do not meet code requirements for serviceability. In addition, it is recommended to use higher reinforcement ratios when using larger span to depth ratios and/or when using CFRP reinforcing bars. Moreover, larger number of bars with small diameter is more practical than fewer large diameter bars. Furthermore, this research suggests that increasing the concrete compressive strength is associated with a significant increase in the ultimate flexural capacity of FRP reinforced beams.


2009 ◽  
Vol 1 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Vidmantas Jokūbaitis ◽  
Linas Juknevičius

The width of normal cracks at the level of tensile reinforcement was calculated according to various methods using the data obtained from experimental tests on reinforced concrete beams (without reinforcement pre-stress), pre-cast reinforced concrete slabs and ribbed roof slabs. Th e numerical results were compared to actual crack widths measured during the experimental tests. Also, the crack widths of pre-stressed reinforced concrete beams were calculated according to various methods and compared with each other. Th e following conclusions were reached based on the analysis of numerical and experimental results: 1) Design stresses in tensile reinforcement calculated according to [STR] and [EC] design codes are very similar, although the calculation of such stresses is more logical and simple according to [EC]. Design stresses calculated according to [RU] are greater due to the estimation of the plastic deformations of concrete in the compressive zone. Th e method proposed by Rozenbliumas (Розенблюмас 1966) estimates tensile concrete above the crack peak, and thus allows a more accurate calculation of stresses in tensile reinforcement (Fig 3). Therefore, the latter stresses in pre-stressed RC beams may be decreased by 10–12 %, when height hct ≠ 0 (Fig 1, c) and ratio M/MRd varies between 0,65 and 0,75; 2) The widths of normal cracks in conventional RC beams (subjected to load that corresponds approx. 70 % of their carrying capacity) calculated according to [STR] and [EC] design codes are almost equal to the experimentally obtained crack widths. When beams and slabs are loaded by approximately 52 % of their carrying capacity, design crack widths wk [EC] are approximately 12 % less than wk [STR], although the design crack width wk [RU] is signifi cantly greater. Here, ratio β in the beams and slabs is equal to 2 and 3.3 respectively. Th erefore, the design code [RU] ensures higher probability that the crack width will not reach the limit value (for environmental class XO and XC1) equal in all design codes mentioned in this article; 3) In case of loaded prestressed reinforced concrete beams, the calculated increases of crack widths wk [EC], wk [RU] and w [5] are greater if compared to wk [STR] (Fig 6). Th e increased reinforcement ratio ρ has more signifi cant infl uence on the increases of crack widths calculated according to other design codes if compared to wk [STR]. Tensile concrete above the crack peak has signifi cant infl uence on the design crack width when pre-stressed RC beams are lightly reinforced (ρ ≤ 0,008); 4) During the evaluation of the state of fl exural RC members, expression (5) could be used for calculating the crack width or a position of the neutral axis when the heights of the crack and the tensile zone above the crack are known (calculated or measured experimentally). Design crack widths w (5) are very similar to the experimentally obtained results.


The present Investigation is aimed at utilizing low cost material Dolomite powder and waste material Quarry dust as partial replacement of cement and sand in concrete. This experimental investigation is carried out in three stages. In 1st stage M25 grade of concrete is produced by replacing cement by 0%, 6%, 12% and 18% of Dolomite Powder. In 2nd Stage concrete is produced by keeping the optimum 12% of dolomite powder as constant and sand is replaced by quarry dust in the percentage of 0%, 25%, 35% and 45%. In 3rd stage the optimum percentage of Dolomite Powder and Quarry Dust (DP+QD) Concrete are used to determine the compressive strength, split tensile strength and flexural strength of concrete and to check the flexural behavior of RCC beams. It is found that the concrete made of low cost material dolomite powder and waste material quarry dust increases the compressive strength, split tensile strength and flexural strength of concrete when compared to that of normal concrete. It also concluded that the first crack load and ultimate load of dolomite powder and quarry dust reinforced concrete beams increases when compared with normal reinforced concrete beams. From study it is concluded that the low cost material Dolomite powder & Quarry dust can be used in construction works which results in construction cost. By using natural resources the environment is protected.


2017 ◽  
Vol 5 (2) ◽  
pp. 1-7
Author(s):  
Ilker Kara ◽  
Besian Sinani

An innovative solution to the corrosion problem is the use of fiber-reinforced polymer (FRP) as an alternative reinforcing material in concrete structures. In addition to the non corrodible nature of FRP materials, they also have a high strength-to-weight ratio that makes them attractive as reinforcement for concrete structures. Extensive research programs have been carried out to investigate the flexural behavior of concrete members reinforced with FRP reinforcement. On the other hand, the shear behavior of concrete members, especially punching shear of two-way slabs, reinforced with FRP bars has not yet been fully explored. The existing provisions for punching of slabs in most international design standards for reinforced concrete are based on tests of steel reinforced slabs. The elastic stiffness and bonding characteristics of FRP reinforcement are sufficiently different from those of steel to affect punching strength. In the present study, the equations of existing design standards for shear capacity of FRP reinforced concrete beams have been evaluated using the large database collected. The experimental punching shear strengths were compared with the available theoretical predictions, including the CSA S806 (CSA 2012), ACI-440.1R-15 (ACI 2015), BS 8110 (BSI 1997), JSCE (1997) a number of models proposed by some researchers in the literature. The existing design methods for FRP reinforced concrete slabs give conservative predictions for the specimens in the database. This paper also presents a simple yet improved model to calculate the punching shear capacity of FRPreinforced concrete slabs. The proposed model provides the accurate results in calculating the punching shear strengths of FRP-reinforced concrete slender slabs.


Author(s):  
Nguyễn Thị Thanh ◽  
Phạm Việt Hùng ◽  
Ngô Quý Tuấn ◽  
Lê Minh Đức ◽  
Nguyễn Trường Giang

Phương pháp tăng cường khả năng chịu uốn của kết cấu sàn bê tông cốt thép sử dụng vật liệu tấm sợi FRP (Fiber Reinforced Polymer) dán ngoài đã trở nên phổ biến, vì những ưu điểm của chúng mang lại như cường độ chịu kéo cao, trọng lượng nhẹ, cách điện, cách nhiệt tốt, bền theo thời gian. Bài báo trình bày quy trình thiết kế tăng cường khả năng chịu uốn của sàn bê tông cốt thép gia cường bằng tấm sợi FRP dán ngoài để đảm bảo yêu cầu khai thác và khảo sát hiệu quả tăng cường tương ứng với các cấp cường độ chịu nén của bê tông theo hướng dẫn ACI 440.2R-17. Kết quả tính toán theo trình tự đề nghị giúp chọn và kiểm tra được diện tích tấm FRP tăng cường cần thiết. Ngoài ra, kết quả tính toán chỉ ra rằng mức độ tăng cường khả năng chịu uốn của sàn tỷ lệ thuận với cường độ chịu nén của bê tông, tương ứng với cường độ bê tông tăng từ 11,5 MPa đến 19,5 MPa, sức kháng uốn tính toán tăng từ 91%  đến 144%. Đồng thời, kết quả cũng cho thấy rằng sự phá hoại của sàn bê tông cốt thép xảy ra do mất dính bám giữa lớp FRP gia cường khỏi bề mặt cấu kiện là chủ yếu. ABSTRACT The method of the flexural strengthening of reinforced concrete slabs using the externally bonded FRP (fiber reinforced polymer) laminates has become popular because of their advantages as high tensile strength, large modulus of elasticity, lightweight, high abrasion resistance, electrical insulation, good heat resistance and durable over the time. The paper presented the design procedure for the flexural strengthening of reinforced concrete slabs with FRP laminates to ensure the mining requirements and investigation of the reinforcement efficiency corresponding to the compressive strength levels of concrete based on ACI 440.2R-17. Calculation results in the suggested sequence helped select and check the required reinforcement FRP areas. In addition, the calculation results showed that the degree of increased flexural strengthening of the slabs was proportional to the compressive strength of the concrete, corresponding to the concrete strength increased from 11,5 MPa to 19,5 MPa, flexural strengthening increases from 91% to 144%. Moreover, the damage to the reinforced concrete slabs was caused by the debonding between the FRP and the surface of the structures.


2020 ◽  
Vol 38 (7A) ◽  
pp. 1034-1046
Author(s):  
Ali ِA. Abdulsada ◽  
Raid I. Khalel ◽  
Kaiss F. Sarsam

The requirements of minimum flexural reinforcement in the last decades have been a reason for controversy. The structural behavior of beams in bending is the best way of investigating and evaluating the minimum reinforcement in flexure. For this purpose, twelve singly reinforced concrete beams with a rectangular cross-section of (125 mm) width by (250 mm) height and (1800 mm) length were cast and tested under two-point loads up to failure. These beams were divided into three groups with different compressive strengths (25, 50, and 80 MPa). Each group consists of four beams with different amounts of tension steel reinforcement approximately equal to (0% Asmin, 50% Asmin, 100% Asmin and 150% Asmin), two bar diameters (Ø6 mm and Ø8 mm) were used as the longitudinal tension reinforcement with different yield and ultimate strengths, the minimum amount of reinforcement required is calculated based on ACI 318M-2014 code. The results show that for the reinforced concrete beams, the flexural reinforcement in NSC beams increases the first cracking load and the increment increased with an increasing amount of reinforcement, while for HSC beams the increasing in first cracking load are very little when the quantity of reinforcement less than the minimum flexural reinforcement and increased with the increasing amount above the minimum flexural reinforcement. The equation of ACI 318M-14 code gives adequate minimum flexural reinforcement for NSC and overestimate value for HSC up to (83 MPa), A new formula is proposed for HSC rectangular beams up to (90 MPa) concrete compressive strength by reducing the equation of ACI 318M-14 code for minimum flexural reinforcement by a factor depending on concrete compressive strength.  


Author(s):  
Vladimir S. Utkin ◽  
Sergey A. Solovyev

The article discusses a problem of the crack length influence on the reliability (safety) of reinforced concrete beams under conditions of limited statistical information about controlled parameters in the design mathematical models of limit state. Numerical examples revealed the possibility of practical application of the reliability analysis methods for inspections and determining the category of the technical condition of buildings and structures. The article offers the methods for reliability (probability of non-failure) analysis and the residual resource of reinforced concrete beams according to the criterion of the normal crack length in the tensile zone of reinforced concrete beams. The methods of reliability analysis constructed on the basis of possibility theory and fuzzy set theory. The algorithms of reliability analysis of reinforced concrete beams are presented on numerical examples of reliability analysis.


2019 ◽  
Vol 968 ◽  
pp. 361-367 ◽  
Author(s):  
Andrii Kovalov ◽  
Yuriy Otrosh ◽  
Mykola Surianinov ◽  
Tatiana Kovalevska

The unsatisfactory technical condition of many buildings and structures is due to their aging and requires a quick technical condition assessment. The most promising way for experimental researches data verification is computer modeling of structures, also during a fire. It is advisable to use the ANSYS software. Experimental fire tests of reinforced concrete slabs were carried out. In order to assess the experiment quality and the reliability of the received temperature distribution data, it was used a reinforced concrete slab computer simulation in the ANSYS R.17.1 software system. There was provided a comparative analysis of experimental studies results and numerical data analysis. The results confirm that method of conducted experimental research and computer simulation with further numerical analysis can be recommended for practical application. The mathematical model makes possible operative prediction for the controlled parameters values of building structures.


Sign in / Sign up

Export Citation Format

Share Document