scholarly journals EXPERIMENTAL COMPARISON OF TWO DESIGNS OF ROAD CLOTHES WITH APPLICATION OF GEOGRID ARRANGED ON THE SLOPES OF LOGGING ROADS WITH WATER-SATURATED CLAY SOIL

2017 ◽  
Vol 7 (1) ◽  
pp. 126-136
Author(s):  
Сушков ◽  
Sergey Sushkov ◽  
Сергеев ◽  
Andrey Sergeev

The article describes the practical experimental study of two road structures, which used geosynthetic grid “Slavros GR” and in the form of honeycomb. Used materials and equipment for experimental research are described in details and graphically shown. A patent search of various designs of geosynthetic grids, used in road construction, is conducted. Materials used for the manufacture of polymer tapes are described in details. Positive and negative sides of geosynthetic gridsused in the experimental study are shown. There is an interesting offer for the location of the geosynthetic grids at a depth of 30 cm from the surface of the subgrade and geotextile material. Due to its location in the depth of 30 cm from the base surface of subgrade of geosynthetic grids and geotextile material the accumulation of moisture and water-saturated clay soil at the junction with the sand reduces, thereby eliminating the influence of frost penetration into the road structure. The authors have developed and proposed a new geosynthetic grid with honeycomb structure, containing seven nodes, with polymeric tapes and with the formation of six triangles which are in its turn are formed by a hexagon with six corner nodes and one central node. In an extended working position grid, stowed in place, represents the structure of a honeycomb with internal triangular cells directed to the center, which is filled with soil or stone bulk materials. The implementation of tapes in this way will increase the overall bearing surface of cell structure that will allow increasing its carrying capacity. The cellular structure of the honeycomb increases the resistance of pavement structures to the processes of cryotolerance soil on the slope by 30-40 %, and presence of the polymeric material of the rubber tape in the composition increases resistance to water erosion by 35-55 %.

Author(s):  
PEARL APHRODITE BOBON CARNICE

Limited information has been published regarding the attenuation ofmicroorganism, specifically amoeba in soil with biochar amendment. This studydetermines the attenuation of amoeba between water-saturated clay and sandysoil with biochar and to determine the effect of biochar in clayey and sandy soilwith amoeba contamination in relation to its transport. Four treatments wereformulated, TS (sandy soil, control), TSB (sandy soil + biochar), TC (clayeysoil, control) and TCB (clayey soil + biochar) and replicated three times. Theexperiment was rendered using a 17cm soil column with 2.5cm diameter;all treatments were saturated and leached. Number of amoeba leached andattenuated was counted under a compound microscope. Results revealed thatclayey soil attenuated more amoeba compared to sandy soil treatment due toits smaller pores. Moreover, biochar amendment in a sandy soil would enhance the attenuation of amoeba and lessen the transport of amoeba while biochar amendment in clayey soil lessens the attenuation and facilitate the transfer ofamoeba. It has also been observed that at four to eight centimeters depth of thesoil column, the spatial distribution of amoeba is superior. The study implies thatbiochar physical enhancement of soil would depend upon the initial texture ofthe soil.' Keywords - Ecology and Conservation, Biochar as Filter for Amoeba Attenuation,Experimental Study, Philippines


2015 ◽  
Vol 7 (6) ◽  
Author(s):  
Anton Dobrynin

The recommendations about calculation offered in this article extend on the ferroconcrete two-conical piles immersed by cave-in for the bases of buildings and constructions which design is developed by "Highways and Bridges" chair of the Perm national research polytechnical university. Two-conical piles are characterized by the increased resilience to action of forces of a frost heaving in comparison with traditionally applied prismatic piles at the expense of the return orientation of the top cone.The description of a method of calculation of the base in the form of a bush from two-conical piles is provided in frosty water-saturated clay soil from the point of view of its stability against action of forces of a frosty heaving. The comparative analysis of the obtained settlement data with experimental is carried out. The technique of determination of size of a frosty heaving of two-conical piles as a part of base bushes is developed and in number realized by forces of a frosty heaving when modeling soil as linearly -deformable space. The calculation method which basis the condition of equality of the works made by forces of a frosty heaving, and forces interfering a frosty heaving of not loaded pile bases from two-conical piles is is offered. The method allows to project with an accuracy sufficient for practical purposes the bases in water-saturated clay soil.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012023
Author(s):  
L V Zakrevskaya ◽  
K A Nikolaeva ◽  
A I Gandelsman ◽  
P A Orekhov

Abstract Increasing the volume of road construction is one of the priority areas of infrastructure development in any country. When building roads, it is preferable to use local materials to reduce the cost of their transportation, therefore, it is advisable to build the roadbed on local soils. It is worth noting that clay water-saturated soils are the most common, which complicates the construction of the road due to some features of this type of soil. The object of the study is a water-saturated clay with the following characteristics: natural humidity from 25.3 % to 28.1% by weight, optimal humidity from 11.8 % to 16.7% by weight, the number of plasticity from 0.118 to 0.153. Clay soils have a number of features: waterlogged soils are difficult to compact and develop, it is quite problematic to dry them, and thixotropy is also characteristic of clay soils. In this regard, it is most advisable to use the method of complex mineral binders to optimize their physical and mechanical properties. In the course of laboratory studies, compositions of soil compositions with the addition of lime waste and superplasticizer P-17 were developed. The dependence of the strength on the consumption of mineral binders and surfactants is established: the maximum compressive strength of the soil being fixed is achieved at a lime content of 25 wt.% and at a P-17 content in the range of 0.10-0.5 wt.%.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Łukasz Skotnicki ◽  
Jarosław Kuźniewski ◽  
Antoni Szydło

The reduction in natural resources and aspects of environmental protection necessitate alternative uses of waste materials in the area of construction. Recycling is also observed in road construction where mineral–cement emulsion (MCE) mixtures are applied. The MCE mix is a conglomerate that can be used to make the base layer in road pavement structures. MCE mixes contain reclaimed asphalt from old, degraded road surfaces, aggregate improving the gradation, asphalt emulsion, and cement as a binder. The use of these ingredients, especially cement, can cause shrinkage and cracks in road layers. The article presents selected issues related to the problem of cracking in MCE mixtures. The authors of the study focused on reducing the cracking phenomenon in MCE mixes by using an innovative cement binder with recycled materials. The innovative cement binder based on dusty by-products from cement plants also contributes to the optimization of the recycling process in road surfaces. The research was carried out in the field of stiffness, fatigue life, crack resistance, and shrinkage analysis of mineral–cement emulsion mixes. It was found that it was possible to reduce the stiffness and the cracking in MCE mixes. The use of innovative binders will positively affect the durability of road pavements.


2019 ◽  
Vol 13 ◽  
pp. 102200 ◽  
Author(s):  
Yingjian Sun ◽  
Yingjie Yu ◽  
Yayu Zuo ◽  
Lili Qiu ◽  
Mingming Dong ◽  
...  

2018 ◽  
Vol 55 (5) ◽  
pp. 333-339 ◽  
Author(s):  
M. Yu. Abelev ◽  
I. V. Averin ◽  
D. Yu. Chunyuk ◽  
O. V. Kopteva

Sign in / Sign up

Export Citation Format

Share Document