scholarly journals IMPLEMENTATION OF THE METHOD FOR DETERMINING AND PROCESSING OF DATA ON THE PARAMETERS OF THE SUBSTRATE SURFACE OF AGROLLDSHIPS OF SLOPE LAND

2018 ◽  
Vol 13 (2) ◽  
pp. 81-85
Author(s):  
Феофан Самуилов ◽  
Feofan Samuilov ◽  
Сергей Васильев ◽  
Sergey Vasil'ev ◽  
Иван Максимов ◽  
...  

The scientific article considers methods for studying the underlying surface of agro landscapes of slope lands - local and integral: contact and non-contact. Each group in turn includes a visual, optical and mechanical approach. For carrying out experimental studies on sloping lands, a method has been developed for determining the average slope, roughness and waviness of an elementary site in the field, and profilographs for its implementation. Using the moving average method, it is possible to break the data into components and isolate, on a general background, the average surface slope, randomly distributed irregularities, surface roughness and technological furrows with a corrugation of the surface. In order to automate the process of determining these parameters, a program has been developed that allows you to directly calculate and display information on the monitor screen. Field studies using a profiler with contactless profilograph were conducted on different soil fertility, including the examination of the field station, located on the slope of the complex after the pre-winter tillage BDM-3x4P in Morgaushskiy District of the Chuvash Republic. After data processing, the average slope of the elementary area for a certain point of the field was 0.06 or 3.440. The direction of the main soil cultivation was determined from the angle of deviation of the technological grooves from the direction of the slope, which amounted to 93.60. The data obtained are presented in the Excel spreadsheet as a relationship between two parameters: the angle of rotation and the height of the surface profile of the soil, in the form of a sweep. Further, using the moving average method for the field section with soil disking, the average slope of the surface was determined to be 3.440, the surface roughness was 3.54 mm, and the waviness (soreness) of the soil surface was 7.94 cm.

2020 ◽  
Vol 193 ◽  
pp. 01066
Author(s):  
Mikhail Vasiliev ◽  
Sergey Vasiliev ◽  
Alexey Vasiliev

In this paper, we analyze a wide range of measurements of the day surface profile of tilled soil in order to substantiate the moving average method for evaluating morphological parameters and studying the influence of the base profile length on the accuracy of the obtained values. The surface roughness of the elementary plot was 4 mm, the surface ridgeness formed by technological furrows was 16 mm, and the slope of the plot was 0.198. The accuracy of the obtained values of roughness and ridgeness of the tilled soil surface depends significantly on the profile length determined by the number of measurements performed. We obtained 5273 data points per one turn of the device on a 6.3 m profile length (1 measurements are made per 1 mm) for the elementary plot. The surface roughness varied from 3, 1 mm to 4, 3 mm, and the ridgeness – 12 ... 21 mm when the number of measurements is from 2000 to 5273. When the measured profile length is about 1.3 m or less (not more 2000 points), the parameters of the tilled soil cover are not considered important. However, they are more critical for ploughed soil than for harrowed soil. On flatter surfaces, the base profile length of 2.5 m may be sufficient to adequately calculate the parameters of the day soil surface.


2021 ◽  
pp. 68-74
Author(s):  
Mikhail Andriyanovich Vasiliev ◽  
Sergey Anatolyevich Vasiliev ◽  
Alexey Anatolyevich Vasiliev

The article analyzes an extensive set of measurements of the daily surface profile of cultivated soil in order to justify the moving average method for evaluating morphological parameters and studying the influence of the base length of the profile on the accuracy of the obtained values. The surface roughness for the elementary platform was 5.08 mm, the surface ridge formed by technological furrows was 21.9 mm, and the slope of the platform was 0.056 or 3.2 degrees. The accuracy of the obtained values of roughness and ridges of the surface of the treated soil depends significantly on the length of the profile under study, determined by the number of measurements performed. For one turn of the device for the elementary platform, 9616 data points were obtained on the profile length of 6.3 m (3 measurements are performed per 2 mm). The surface roughness varied from 2 mm to 6 mm, and the ridge – 16 ... 28 mm with the number of measurements from 2000 to 9600. When the measured profile length is about 1.3 m or less (no more than 2000 points), the parameters of the treated soil cover are greatly underestimated, and this error is greater for ploughed soil than for cored soil. On flatter surfaces, the base profile length of 2.5 m may be sufficient to adequately calculate the parameters of the daily soil surface.


2017 ◽  
Vol 24 (3) ◽  
pp. 569-579 ◽  
Author(s):  
Benjamin K. B. Abban ◽  
A. N. (Thanos) Papanicolaou ◽  
Christos P. Giannopoulos ◽  
Dimitrios C. Dermisis ◽  
Kenneth M. Wacha ◽  
...  

Abstract. This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR) index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.


2020 ◽  
Vol 12 (1) ◽  
pp. 232-241
Author(s):  
Na Ta ◽  
Chutian Zhang ◽  
Hongru Ding ◽  
Qingfeng Zhang

AbstractTillage and slope will influence soil surface roughness that changes during rainfall events. This study tests this effect under controlled conditions quantified by geostatistical and fractal indices. When four commonly adopted tillage practices, namely, artificial backhoe (AB), artificial digging (AD), contour tillage (CT), and linear slope (CK), were prepared on soil surfaces at 2 × 1 × 0.5 m soil pans at 5°, 10°, or 20° slope gradients, artificial rainfall with an intensity of 60 or 90 mm h−1 was applied to it. Measurements of the difference in elevation points of the surface profiles were taken before rainfall and after rainfall events for sheet erosion. Tillage practices had a relationship with fractal indices that the surface treated with CT exhibited the biggest fractal dimension D value, followed by the surfaces AD, AB, and CK. Surfaces under a stronger rainfall tended to have a greater D value. Tillage treatments affected anisotropy differently and the surface CT had the strongest effect on anisotropy, followed by the surfaces AD, AB, and CK. A steeper surface would have less effect on anisotropy. Since the surface CT had the strongest effect on spatial variability or the weakest spatial autocorrelation, it had the smallest effect on runoff and sediment yield. Therefore, tillage CT could make a better tillage practice of conserving water and soil. Simultaneously, changes in semivariogram and fractal parameters for surface roughness were examined and evaluated. Fractal parameter – crossover length l – is more sensitive than fractal dimension D to rainfall action to describe vertical differences in soil surface roughness evolution.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4386
Author(s):  
Afshin Azizi ◽  
Yousef Abbaspour-Gilandeh ◽  
Tarahom Mesri-Gundoshmian ◽  
Aitazaz A. Farooque ◽  
Hassan Afzaal

Soil roughness is one of the most challenging issues in the agricultural domain and plays a crucial role in soil quality. The objective of this research was to develop a computerized method based on stereo vision technique to estimate the roughness formed on the agricultural soils. Additionally, soil till quality was investigated by analyzing the height of plow layers. An image dataset was provided in the real conditions of the field. For determining the soil surface roughness, the elevation of clods obtained from tillage operations was computed using a depth map. This map was obtained by extracting and matching corresponding keypoints as super pixels of images. Regression equations and coefficients of determination between the measured and estimated values indicate that the proposed method has a strong potential for the estimation of soil shallow roughness as an important physical parameter in tillage operations. In addition, peak fitting of tilled layers was applied to the height profile to evaluate the till quality. The results of this suggest that the peak fitting is an effective method of judging tillage quality in the fields.


Sign in / Sign up

Export Citation Format

Share Document