scholarly journals MICROSTRUCTURES, MECHANICAL PROPERTIES INGOT AlSi7Fe1 AFTER BLOWING OXYGEN THROUGH MELT

2017 ◽  
Vol 23 (1) ◽  
pp. 4 ◽  
Author(s):  
Arkady B. Finkelstein ◽  
Olga A. Chikova ◽  
Arseny Schaefer

<p class="AMSmaintext"><span class="hps"><span lang="EN-US">The new technology of producing ingot of AlSi7Fe1 high-strength is described.</span></span><span class="hps"><span lang="EN-US"> This new technology </span><span lang="EN-GB">consists</span></span><span class="hps"><span lang="EN-US"> in saturation of melt with hydrogen, with further blowing with oxygen. Studied the microstructure, phase composition and mechanical properties of ingot after blowing oxygen of melt and ingot obtained with the traditional method.  Have suggested that in liquid aluminum alloy AlSi7Fe1 because of blowing with oxygen arise refractory particles Al<sub>2</sub>O<sub>3</sub>. These particles Al<sub>2</sub>O<sub>3</sub> further in crystallization serve as a modifier of the microstructure of ingot. Mostly observed <a name="_GoBack"></a>modifications of eutectic phases. Thus saturation of melt with hydrogen, with further blowing with oxygen provides an increased tensile strength of ingot AlSi7Fe1. </span></span></p>

2015 ◽  
Vol 220-221 ◽  
pp. 583-588 ◽  
Author(s):  
Krzysztof Dudzik ◽  
Mirosław Czechowski

The paper presents the research results on the mechanical properties of aluminum alloy 7020 and its FSW and MIG welded joints. For comparison, alloy 5083 – the most currently used in shipbuilding alloy was chosen as well as 5059 – the new high-strength alloy. Besides, the native material alloys there were investigated their joints welded by FSW and MIG – the same methods as alloy 7020. Welding parameters used for the connection of the sheets made of 7020, 5083 and 5059 alloys were presented. Metallographic analysis showed the correct construction of structural bonded joints.Friction Stir Welding (FSW) – a new technology can be successfully used for butt welding of different types of aluminum alloy sheets. FSW method can be an alternative to traditional arc welding methods, especially MIG, which is the most common method of joining aluminum alloys used in shipbuilding. The research was carried out using a static tensile test in accordance with the requirements of the Polish Standards PN-EN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Flat samples cut perpendicular to the direction of rolling were used. The research was conducted at the temperature of +20 oC.Friction stir welded joints of tested alloys have higher strength properties as compared to MIG welded joints. The 7020 alloy has higher strength properties then alloys 5083 and 5059. The yield stress is higher by 14.8% as compared to alloy 5083, and by 11.7% as compared to the alloy 5059. Plastic properties of alloy 7020 are the lowest, but with reserves meet the requirements of classification societies. The joints welded by FSW of alloy 7020 have the highest strength properties of all researched joints – higher then alloys 5083 and 5059 joints welded by FSW and joints of all alloys welded by MIG.


2016 ◽  
Vol 852 ◽  
pp. 344-348
Author(s):  
R. Mohammed Ryan ◽  
E. Sangeeth Kumar

The development of the friction stir welding being a solid state welding has provided an improved way of manufacturing aluminum joints in a quicker and reliable manner. The heat treatable aluminum alloy AA7075 is used substantially in the aerospace industry because of its high strength to weight ratio and good ductility. The objective of our work is to research the parameters of welding on the mechanical properties of friction stir welded joints of AA7075-T651. The parameters namely rotational speeds (500 rpm, 700 rpm, 900 rpm, 1100 rpm, 1300 rpm and 1500 rpm) were thought-about and table transverse speed of 50 mm/min, axial force of 8 KN is constrained throughout the welding process. The result of these parameters on weld quality is analyzed by its mechanical properties namely micro hardness and tensile strength.


Alloy Digest ◽  
2000 ◽  
Vol 49 (4) ◽  

Abstract Kaiser Aluminum alloy 7068 has the highest mechanical properties (tensile strength) of the aluminum alloys. It is intended for aerospace, ordnance, and lightweight recreational applications where extremely high strength is required. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: AL-369. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Author(s):  
Chun Guo ◽  
Maoxue Liu ◽  
Ruizhang Hu ◽  
Tuoyu Yang ◽  
Baoli Wei ◽  
...  

Abstract High-strength 690-MPa steel was prepared using a wire + arc additive manufacturing (WAAM) technology. The phase composition, microstructure, and crystal structure of highstrength 690-MPa steel samples were analysed, and the results show that a sample prepared using WAAM technology achieves a good formation quality. The metallographic structure was mainly acicular ferrite, massive ferrite, and granular bainite. The microhardness distribution of the vertical and horizontal sections of the samples is uniform. Excellent mechanical properties of the specimen were shown, including a horizontal yield strength of 536 MPa, a tensile strength of 760 MPa, an elongation of 23.5%, a Charpy impact value of 70 J at -508C, a vertical yield strength of 486 MPa, a tensile strength of 758 MPa, an elongation of 21.5%, and a Charpy impact value of 51 J at -508C.


2012 ◽  
Vol 165 ◽  
pp. 6-11 ◽  
Author(s):  
Ng Guan Yao ◽  
Bin Abd Rashid Mohd Warikh ◽  
Buang Zolkepli ◽  
N. Nadiah ◽  
S.C. Leng

Aluminum alloy 7075 is a useful material in industry due to its light weight, high strength, and resistance to general corrosion properties. The drawback of this alloy is its susceptibility to stress corrosion cracking (SCC). From the previous research, it was found that retrogression and re-aging (RRA) heat treatment is able to improve the SCC resistance of this alloy. In this study, the mechanical properties and microstructure alteration due to RRA was studied. First, the tensile specimens are heat treated to T6 and then retrogressed at 165/185/205°C for 10/30 minutes followed by re-aging at 120°C for 24 hours. The retrogression methods are categorized as standard retrogression and oil retrogression. Next, the specimens were gone through tensile test, hardness test, and microstructure characterization by using SEM. From the mechanical test result, the tensile strength and hardness of the alloy decreased upon the increment of retrogression temperature and time. The highest tensile strength of 638.48 MPa was observed at oil retrogress sample at 165°C for 10 minutes which is slight higher than T6 sample. Besides, different phases of precipitation were reviewed by the Kellers etching process. Also, the volume fraction of η phase is increased upon increasing the retrogression temperature and time.


2013 ◽  
Vol 421 ◽  
pp. 250-254 ◽  
Author(s):  
Hua Shen ◽  
He Liang ◽  
Wei Dong Yang ◽  
Guang Chun Yao ◽  
Chuan Sheng Wang

The effects of yttrium (Y) on microstructures and mechanical properties of aluminium alloy were investigated in detail by scanning electronic microscope (SEM), energy dispersive spectrum (EDS),X-ray diffraction and tensile test. The results show that the trend of alloys tensile strength and elongation with increasing of the Y content is a broken line. When the Y content is increased up to 0.30%, the tensile strength and elongation are 105MPa and 10.50% respectively, meanwhile, the fractograph exhibited typical ductile dimple fracture pattern. Then the alloy performance is best. The high strength of aluminum alloy is attributed to the size of Al2Y phase. Addition of Y above 0.30% in aluminum alloy may generate more the coarse Al2Y particle. It can induce the decrease in the material performance.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


Sign in / Sign up

Export Citation Format

Share Document