scholarly journals The Summer Cooling and Lighting Energy Performance Evaluation of Small Office Buildings with Venetian Blinds

Author(s):  
Yu-Gun Chung
2017 ◽  
Vol 42 (1) ◽  
pp. 16-22
Author(s):  
Jian Yao ◽  
Rong-Yue Zheng

This paper conducted a study on the energy-saving potential of a developed thermotropic window. Office buildings in different climate regions of China were compared in terms of heating, cooling and lighting energy demands. Results show that annual heating and cooling energy demands for office buildings differ largely, while lighting energy demand at different climates keeps a significant percentage of the total energy demand, ranging from 36.1% to 66.3%. Meanwhile, thermotropic windows achieve a great advantage in improving daylighting performance and in reducing the overall energy demand, by reducing the overall energy demand by 2.27%-8.7% and 10.1%-21.72%, respectively, compared to movable shading devices and Low-E windows. This means that this kind of thermotropic windows have a great potential in applications in different climatic regions and can be considered as a good substitute of solar shading devices and Low-E windows.


Energy ◽  
2021 ◽  
pp. 122266
Author(s):  
Yutong Tan ◽  
Jinqing Peng ◽  
Yimo Luo ◽  
Jing Gao ◽  
Zhengyi Luo ◽  
...  

2021 ◽  
pp. 147715352098742
Author(s):  
FŞ Yilmaz

Office buildings are building typologies where efficient and optimal use of lighting energy is crucial while providing comfortable visual environments. The purpose of this study is to explore the impact of diverse architectural design alternatives on lighting energy requirements and lighting energy saving possibilities through a case study. In this study, a total of 3888 design alternatives are investigated in a comparative way in terms of daylighting system design alternatives, artificial lighting system design scenarios, artificial lighting system control types and shading system control options. Introducing the adaptation process of the EN 15193-1:2017 standard for Turkey’s specific climatic and geographical conditions and considering diverse lighting design scenarios, results of this parametric study aim to underline the significance of architectural design strategies in office buildings for the reduction of lighting energy requirements.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2064
Author(s):  
Jin-Hee Kim ◽  
Seong-Koo Son ◽  
Gyeong-Seok Choi ◽  
Young-Tag Kim ◽  
Sung-Bum Kim ◽  
...  

Recently, there have been significant concerns regarding excessive energy use in office buildings with a large window-to-wall ratio (WWR) because of the curtain wall structure. However, prior research has confirmed that the impact of the window area on energy consumption varies depending on building size. A newly proposed window-to-floor ratio (WFR) correlates better with energy consumption in the building. In this paper, we derived the correlation by analyzing a simulation using EnergyPlus, and the results are as follows. In the case of small buildings, the results of this study showed that the WWR and energy requirement increase proportionally, and the smaller the size is, the higher the energy sensitivity will be. However, results also confirmed that this correlation was not established for buildings approximately 3600 m2 or larger. Nevertheless, from analyzing the correlation between the WFR and the energy requirements, it could be deduced that energy required increased proportionally when the WFR was 0.1 or higher. On the other hand, the correlation between WWR, U-value, solar heat gain coefficient (SHGC), and material property values of windows had little effect on energy when the WWR was 20%, and the highest effect was seen at a WWR of 100%. Further, with an SHGC below 0.3, the energy requirement decreased with an increasing WWR, regardless of U-value. In addition, we confirmed the need for in-depth research on the impact of the windows’ U-value, SHGC, and WWR, and this will be verified through future studies. In future studies on window performance, U-value, SHGC, visible light transmittance (VLT), wall U-value as sensitivity variables, and correlation between WFR and building size will be examined.


2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Sign in / Sign up

Export Citation Format

Share Document