scholarly journals Influence of Axial Compressor Model Simplification and Mesh Density on Surge Margin Evaluation

2021 ◽  
Vol 15 (3) ◽  
pp. 243-253
Author(s):  
Rafał Muchowski ◽  
Sławomir Gubernat
Author(s):  
Justin (Jongsik) Oh

In many aerodynamic design parameters for the axial-flow compressor, three variables of tailored blading, blade lean and sweep were considered in the re-design efforts of a transonic single stage which had been designed in 1960’s NASA public domains. As Part 1, the re-design was limited to the stator vane only. For the original MCA (Multiple Circular Arc) blading, which had been applied at all radii, the CDA (Controlled Diffusion Airfoil) blading was introduced at midspan as the first variant, and the endwalls of hub and casing (or tip) were replaced with the DCA (Double Circular Arc) blading for the second variant. Aerodynamic performance was predicted through a series of CFD analysis at design speed, and the best aerodynamic improvement, in terms of pressure ratio/efficiency and operability, was found in the first variant of tailored blading. It was selected as a baseline for the next design efforts with blade lean, sweep and both combined. Among 12 variants, a case of positively and mildly leaned blades was found the most attractive one, relative to the original design, providing benefits of an 1.0% increase of pressure ratio at design flow, an 1.7% increase of efficiency at design flow, a 10.5% increase of the surge margin and a 32.3% increase of the choke margin.


Author(s):  
Klaus Brun ◽  
Rainer Kurz ◽  
Harold R. Simmons

Gas turbine power enhancement technologies such as inlet fogging, interstage water injection, saturation cooling, inlet chillers, and combustor injection are being employed by end-users without evaluating the potentially negative effects these devices may have on the operational integrity of the gas turbine. Particularly, the effect of these add-on devices, off-design operating conditions, non-standard fuels, and compressor degradation/fouling on the gas turbine’s axial compressor surge margin and aerodynamic stability is often overlooked. Nonetheless, compressor aerodynamic instabilities caused by these factors can be directly linked to blade high-cycle fatigue and subsequent catastrophic gas turbine failure; i.e., a careful analysis should always proceed the application of power enhancement devices, especially if the gas turbine is operated at extreme conditions, uses older internal parts that are degraded and weakened, or uses non-standard fuels. This paper discusses a simplified method to evaluate the principal factors that affect the aerodynamic stability of a single shaft gas turbine’s axial compressor. As an example, the method is applied to a frame type gas turbine and results are presented. These results show that inlet cooling alone will not cause gas turbine aerodynamic instabilities but that it can be a contributing factor if for other reasons the machine’s surge margin is already slim. The approach described herein can be employed to identify high-risk applications and bound the gas turbine operating regions to limit the risk of blade life reducing aerodynamic instability and potential catastrophic failure.


Author(s):  
M. Inoue ◽  
M. Kuroumaru ◽  
M. Furukawa ◽  
Y. Kinoue ◽  
T. Tanino ◽  
...  

This research aims to develop an advanced technology of highly loaded axial compressor stages with high efficiency and sufficient surge margin. To improve endwall boundary layer flows which lead to energy loss and instability at an operation of low flow rate, the Controlled-Endwall-Flow (CEF) rotor blades were designed and tested in the low speed rotating cascade facility of Kyushu University. The CEF rotor blades have three distinctive features: the leading-edge sweep near hub and casing wall, the leading-edge bend near the casing, and the same exit metal angle of blade evaluated by a conventional design method. Mechanical strength of the blade was verified by a numerical simulation at a high speed condition. The baseline rotor blades were designed under the same design condition and tested to compare with the CEF rotor. The results showed that the maximum stage efficiency of the CEF rotor was higher by 0.7 percent and the increase in surge margin was more than 20 percent in comparison with the baseline rotor. The results of both internal flow survey and 3D Navier-Stokes analysis showed that improvement of the overall stage performance resulted from activation of the endwall boundary layers, and suggested that further improvement might be expected by combination of end-bend stator blades and a highly loaded axial compressor stage could be developed by use of the CEF rotor.


1994 ◽  
Author(s):  
John Dunham

It is well recognised that the endwall regions of a compressor — in which the annulus wall flow interacts with the mainstream flow — have a major influence on its efficiency and surge margin. Despite many attempts over the years to predict the very complex flow patterns in the endwall regions, current compressor design methods still rely largely on empirical estimates of the aerodynamic losses and flow angle deviations in these regions. This paper describes a new phenomenological model of the key endwall flow phenomena treated in a circumferentially-averaged way. It starts from Hirsch and de Ruyck’s annulus wall boundary layer approach, but makes some important changes. The secondary vorticities arising from passage secondary flows and from tip clearance flows are calculated. Then the radial interchanges of momentum, energy and entropy arising from both diffusion and convection are estimated The model is incorporated into a streamline curvature program. The empirical blade force defect terms in the boundary layers are selected from cascade data. The effectiveness of the method is illustrated by comparing the predictions with experimental results on both low speed and high speed multistage compressors. It is found that the radial variation of flow parameters is quite well predicted, and so is the overall performance, except when significant endwall stall occurs.


Author(s):  
Yanling Li ◽  
Abdulnaser Sayma

Gas turbine axial compressor blades may encounter damage during service for various reasons. Debris from casing or foreign objects may impact blades causing damage near the rotor’s tip. This may result in deterioration of performance and reduction in the surge margin. Ability to assess the effect of damaged blades on the compressor performance and stability is important at both the design stage and in service. The damage to compressor blades breaks the cyclic symmetry of the compressor assembly. Thus computations have to be performed using the whole annulus. Moreover, if rotating stall or surge occurs, the downstream boundary conditions are not known and simulations become difficult. This paper presents an unsteady CFD analysis of compressor performance with tip curl damage. Tip curl damage typically occurs when rotor blades hit a loose casing liner. The computations were performed up to the stall boundary, predicting rotating stall patterns. The aim is to assess the effect of blade damage on stall margin and provide better understanding of the flow behaviour during rotating stall. Computations for the undamaged rotor are also performed for comparison. A transonic axial compressor rotor is used for the time-accurate numerical unsteady flow simulations, with a variable choked nozzle downstream simulating an experimental throttle. One damaged blade was introduced in the rotor assembly and computations were performed at 60% of the design rotational speed. It was found that there is no significant effect on the compressor stall margin due to one damaged blade despite the differences in rotating stall patterns between the undamaged and damaged assemblies.


Author(s):  
Marcus Lejon ◽  
Tomas Grönstedt ◽  
Niklas Andersson ◽  
Lars Ellbrant ◽  
Hans Mårtensson

Delaying breakdown of the flow in the tip region of a tip-critical compressor rotor as long as possible, i.e. improving the surge margin, is of great interest to the turbomachinery community and is the focus of this study. The surge margin of ten compressor rotors is evaluated numerically, each with different blade loading and geometry at the tip. Previous work in the field has shown the dependence of an interface in the tip region of a compressor rotor between the incoming flow and the tip clearance flow with the passage flow coefficient ϕ. Previous work in the field has also shown that a higher incoming meridional momentum in the tip region can be beneficial to the surge margin of a tip-critical rotor. The present study generalizes these findings by taking into account the local blade loading of the rotor tip section and the level of loss in the tip region. The surge margin is found to improve if the blade loading of the rotor tip section is increased, which acts to increase the incoming mass flow rate and improve the surge margin provided that an increase in loss, mainly related to the strength and direction of the tip clearance flow, does not negate the effect as the compressor is throttled. Two quantities are proposed as objective functions to be used for optimization to achieve a compressor rotor with high surge margin based on the flow field at the design point. Finally, an optimization and analysis of the results is made to demonstrate the proposed objective functions in practise.


Author(s):  
H. Joubert

In order to improve the air inlet engine compatibility, SNECMA has carried out since several years an important effort to predict the effect of distorted inlet flow on compressor stability. Two different methods are developed: In the first one, the Euler equations are integrated in 2D blade to blade surface with a distorted inlet flow. This method is used to compare different profiles, in particular influence of the chord length is presented. In the second one, the aerodynamic behaviour of a multistage compressor operating in distorted inlet flow is calculated with a three dimensional method. This model is based on Euler equations resolution outside the rows. An actuator disk model is used to represent the response of the blade rows. The behaviour of a three stage axial compressor has been studied. The loss of surge margin and the pressure distortion transfer are compared with experimental data.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Jinxin Cheng ◽  
Zhaohui Dong ◽  
Shengfeng Zhao ◽  
Hang Xiang

Multistage axial compressor is the key component of aeroengine and gas turbine to realize energy conversion. In order to avoid the “curse of dimensionality” problem in the global optimization process of AL-31F four-stage low-pressure compressor under multiple working conditions, an optimization method based on phased parameterization strategy is proposed. The method uses the idea of “exploration before exploitation” for reference and divides the optimization process into two phases. In the first phase, the traditional parametric modification method based on stacking line is adopted; in the second phase, the full-blade surface parametric modification method with significant low-dimensional characteristics is adopted. Based on the improved artificial bee colony algorithm, a multitask concurrent optimization system is built on the supercomputing platform, and the engineering optimization solution is obtained within 91 hours. The optimization results are as follows: under the condition of meeting the constraints, the adiabatic efficiency is increased by 0.3% and the surge margin is 4.0% at the design speed; the adiabatic efficiency is increased by 0.8% and the surge margin is 2.3% at the off-design speed. These results verify the usefulness and reliability of the optimization method in the field of aerodynamic optimization of a multistage axial flow compressor.


Author(s):  
Andreas Bohne ◽  
Reinhard Niehuis

This paper deals with unsteady measurements in a highspeed three-stage axial compressor with inlet guide vanes (IGV) and controlled diffusion airfoils (CDA) at off-design conditions. The compressor under consideration exhibits design features of real industrial compressors. The main emphasis is put on the experimental investigation of two operating points at 68% nominal speed where a significant mismatching of the stages occurs. The first operating point is the last stable one near the surge margin whereas the second one represents choke. Probe traverses with a high resolution both in space and time show the significant potential upstream influence of the rotor blades. This effect and the disturbances caused by the convected wakes do strongly influence the unsteady boundary layer behaviour of the stator blades which are detected by glue-on hot-film sensors at different spanwise positions. Dynamic pressure transducers on the casing show that the structure of the rotor tip clearance flow strongly depends on the operating conditions of the compressor. Conclusions can be drawn concerning the consideration of the discussed unsteady effects within the design process of multistage axial compressors with respect to the presented results.


2004 ◽  
Vol 128 (3) ◽  
pp. 617-625 ◽  
Author(s):  
Klaus Brun ◽  
Rainer Kurz ◽  
Harold R. Simmons

Gas turbine power enhancement technologies, such as inlet fogging, interstage water injection, saturation cooling, inlet chillers, and combustor injection, are being employed by end users without evaluating the potentially negative effects these devices may have on the operational integrity of the gas turbine. Particularly, the effect of these add-on devices, off-design operating conditions, nonstandard fuels, and compressor degradation∕fouling on the gas turbine’s axial compressor surge margin and aerodynamic stability is often overlooked. Nonetheless, compressor aerodynamic instabilities caused by these factors can be directly linked to blade high-cycle fatigue and subsequent catastrophic gas turbine failure; i.e., a careful analysis should always proceed the application of power enhancement devices, especially if the gas turbine is operated at extreme conditions, uses older internal parts that are degraded and weakened, or uses nonstandard fuels. This paper discusses a simplified method to evaluate the principal factors that affect the aerodynamic stability of a single-shaft gas turbine’s axial compressor. As an example, the method is applied to a frame-type gas turbine and results are presented. These results show that inlet cooling alone will not cause gas turbine aerodynamic instabilities, but that it can be a contributing factor if for other reasons the machine’s surge margin is already slim. The approach described herein can be employed to identify high-risk applications and bound the gas turbine operating regions to limit the risk of blade life reducing aerodynamic instability and potential catastrophic failure.


Sign in / Sign up

Export Citation Format

Share Document