scholarly journals Price Forecasting of Mango in Varanasi Market of Uttar Pradesh

2018 ◽  
Vol 6 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Ravishankar Pardhi ◽  
Rakesh Singh ◽  
Ranjit Kumar Paul

The study had been made to forecast the price of mango using ARIMA model in one of the major markets of Uttar Pradesh as the state ranks first position in production of mango in India. Varanasi market was selected purposively on the basis of second highest arrival market of mango in the state. Using ARIMA methodology on the monthly prices of mango collected from the Agricultural Produce Market Committee (APMC), Varanasi for the year 1993 to 2015. As the mango fruit having property of alternate bearing, only six month data from March to August was available in the market and accordingly had been used for forecasting analysis using E-views 7 software. The results revealed that the price in selected market was found to be highest during the start of the season using ARIMA (1,0,6) model, confirming the validity of model through Mean Absolute Percentage Error (MAPE). The MAPE was found to be less than 10 per cent for one step ahead forecast of year 2015. Forecasted price for the month of March was almost double than the price of other months. It indicates the necessity of adopting pre and post harvest management technologies for getting the benefit over increase in prices.

2016 ◽  
Vol 8 (1) ◽  
pp. 50-54
Author(s):  
B. S. Yashavanth ◽  
K. N. Singh ◽  
Amrit Kumar Paul

In this globalized world, management of food security in the developing countries like India where agriculture is dominated needs efficient and reliable price forecasting models more than ever. Forecasts of agricultural prices are handy to the policymakers, agribusiness industries and farmers. In the present study, Functional Coefficient Autoregression (FCAR) has been applied for modeling and forecasting the monthly wholesale price of clean coffee seeds in Hyderabad coffee consuming center using the data from Jan, 2001 to Sep, 2014. FCAR (2,2) model was found suitable based on the minimum Average Prediction Error (APE) criterion. The FCAR model thus obtained was compared with the Autoregressive Integrated Moving Average (ARIMA) model. Since the original series was found to be nonstationary from Augmented Dickey-Fuller test (ADF statistic=-2.84, p=0.22), the differenced series (ADF statistic=-4.20, p<0.01) was used and ARIMA (12,1,0) was found suitable. The FCAR model obtained was compared with the ARIMA model with respect to forecast accuracy measures viz., Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The RMSE and MAPE for the FCAR (2,2) were found to be 17.16 and 4.41%, respectively, whereas for the ARIMA (12,1,0) models, 62.64 and 26.15%, respectively. The results indicated that the FCAR model was efficient than the ARIMA model in forecasting the future prices.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3299
Author(s):  
Ashish Shrestha ◽  
Bishal Ghimire ◽  
Francisco Gonzalez-Longatt

Withthe massive penetration of electronic power converter (EPC)-based technologies, numerous issues are being noticed in the modern power system that may directly affect system dynamics and operational security. The estimation of system performance parameters is especially important for transmission system operators (TSOs) in order to operate a power system securely. This paper presents a Bayesian model to forecast short-term kinetic energy time series data for a power system, which can thus help TSOs to operate a respective power system securely. A Markov chain Monte Carlo (MCMC) method used as a No-U-Turn sampler and Stan’s limited-memory Broyden–Fletcher–Goldfarb–Shanno (LM-BFGS) algorithm is used as the optimization method here. The concept of decomposable time series modeling is adopted to analyze the seasonal characteristics of datasets, and numerous performance measurement matrices are used for model validation. Besides, an autoregressive integrated moving average (ARIMA) model is used to compare the results of the presented model. At last, the optimal size of the training dataset is identified, which is required to forecast the 30-min values of the kinetic energy with a low error. In this study, one-year univariate data (1-min resolution) for the integrated Nordic power system (INPS) are used to forecast the kinetic energy for sequences of 30 min (i.e., short-term sequences). Performance evaluation metrics such as the root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE) of the proposed model are calculated here to be 4.67, 3.865, 0.048, and 8.15, respectively. In addition, the performance matrices can be improved by up to 3.28, 2.67, 0.034, and 5.62, respectively, by increasing MCMC sampling. Similarly, 180.5 h of historic data is sufficient to forecast short-term results for the case study here with an accuracy of 1.54504 for the RMSE.


2021 ◽  
Author(s):  
Deepika Jha ◽  
Varun Panickar ◽  
Dipankar Das

During 2017–2020, a team of researchers at the Indian Institute for Human Settlements conducted a series of primary and secondary studies on land record modernisation initiatives in five states and union territories of India. Based on extensive on-ground research, this work is part of a five-volume set that presents findings from Delhi, Maharashtra, Chandigarh, Karnataka and Uttar Pradesh, with a focus on urban land and property records and the associated complexities. This volume on Maharashtra brings out the impact of having a historically enshrined system of maintaining property records even in urban areas, created via city surveys. The state also has a supporting legislative framework, which has enabled capturing some details of vertical property, although in a fragmented and decentralised manner.


2021 ◽  
pp. 1-13
Author(s):  
Muhammad Rafi ◽  
Mohammad Taha Wahab ◽  
Muhammad Bilal Khan ◽  
Hani Raza

Automatic Teller Machine (ATM) are still largely used to dispense cash to the customers. ATM cash replenishment is a process of refilling ATM machine with a specific amount of cash. Due to vacillating users demands and seasonal patterns, it is a very challenging problem for the financial institutions to keep the optimal amount of cash for each ATM. In this paper, we present a time series model based on Auto Regressive Integrated Moving Average (ARIMA) technique called Time Series ARIMA Model for ATM (TASM4ATM). This study used ATM back-end refilling historical data from 6 different financial organizations in Pakistan. There are 2040 distinct ATMs and 18 month of replenishment data from these ATMs are used to train the proposed model. The model is compared with the state-of- the-art models like Recurrent Neural Network (RNN) and Amazon’s DeepAR model. Two approaches are used for forecasting (i) Single ATM and (ii) clusters of ATMs (In which ATMs are clustered with similar cash-demands). The Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute Percentage Error (SMAPE) are used to evaluate the models. The suggested model produces far better forecasting as compared to the models in comparison and produced an average of 7.86/7.99 values for MAPE/SMAPE errors on individual ATMs and average of 6.57/6.64 values for MAPE/SMAPE errors on clusters of ATMs.


Author(s):  
Annisa Puspa Kirana ◽  
Adhitya Bhawiyuga

At the end of December 2019, the virus emerges from Wuhan, China, and resulted in a severe outbreak in many cities in China and expanding globally, including Indonesia. Indonesia is the fourth most populated country globally. As of February 2021, Indonesia in the first rank of positive cases of COVID-19 in Southeast Asia, number 4 in Asia, and number 19 in the world. Our paper aims to provide detailed reporting and analysis of the COVID-19 case overview and forecasting that have hit Indonesia. Our time-series dataset from March 2020 to January 2021. Summary of cases studied included the number of positive cases and deaths due to COVID-19 on a daily or monthly basis. We use time series and forecasting analysis using the Naïve Forecast method.  The prediction is daily case prediction for six months starting from February 1, 2021, to June 30, 2021, using active cases daily COVID-19 data in all provinces in Indonesia. The highest monthly average case prediction is in June, which is 35,662 cases. Our COVID-19 prediction study has a mean absolute percentage error (MAPE) score of 15.85%.


In international market, trading of metals has played a vital role. Metal cost might affect the nation’s economy. There are so many base metals available which have been utilized in world trading for construction and manufacturing of goods. Among them gold, silver, platinum, palladium have been treated as precious metals which has economic values. Therefore today’s researchers have concentrated their investigation on metal prediction using diversified algorithms like Auto Regressive Integrated Moving Average (ARIMA), KNN (K-Nearest Neighbor),Artificial Neural Network (ANN) and Support Vector Machine (SVM) etc. In this paper our foremost objective is to predict gold price, so we put our research on this metal. In this work we have employed rough set based affinity propagation algorithm for predicting future gold price and we compared our proposed model with rough set and ARIMA model basing upon the performance measures such as root mean square error (RMSE) and mean absolute percentage error (MAPE). The experimental result shows that the proposed model outperforms rough set and ARIMA model


Sign in / Sign up

Export Citation Format

Share Document