scholarly journals Rainfall Trend and Variability Analysis of Sub-Tropical Hills of Arunachal Pradesh in Northeastern Himalayan Region of India

2016 ◽  
Vol 11 (2) ◽  
pp. 631-636
Author(s):  
Kaushik Bhagawati ◽  
Rupankar Bhagawati ◽  
Amit Sen ◽  
Kshitiz Shukla ◽  
Rajesh Alone

The climate change especially the changes in rainfall pattern is most crucial for Himalayan region as it leads to changes in river runoff and consequently affecting environment, agricultural productivity and human livelihood downstream. Current study aims to evaluate the rainfall trend and variability in the highest rainfall recipient sub-tropical hill regions of Arunachal Pradesh in Northeastern Himalayan region of India. Sen’s estimator is used for trend analysis and Mann-Kendall test to determine significance of the trend. The 37 years (1979-2015) data reveals no clear and consistent trend of average annual rainfall. But a wide inter and intra seasonal variation in the monthly rainfall has been observed. Also a significant shift in rainfall during pre-monsoon and Southwest monsoon was noticed leading to change in forest and agricultural growing seasons, mid-season dry spell during July and increase in extreme rainfall events during August, September and October. The trend analysis of rainfall will help in prediction of future climate scenarios in this Himalayan region and to understand the impact of climate change.

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1225
Author(s):  
Atul Saini ◽  
Netrananda Sahu ◽  
Pankaj Kumar ◽  
Sridhara Nayak ◽  
Weili Duan ◽  
...  

In this paper, the rainfall trend of the West Coast Plain and Hill Agro-Climatic Region is analyzed for 117 years (1901–2017). This region is a globally recognized biodiversity hotspot and known for one of the highest rainfall receiving regions in India. Rainfall grid dataset is used for the analysis of rainfall trends on monthly, seasonal, and decadal time scales. Modified Mann–Kendall’s test, Linear Regression, Innovative Trend Analysis, Sen’s Slope test, Weibull’s Recurrence Interval, Pearson’s Coefficient of Skewness, Consecutive Disparity Index, Kurtosis, and some other important statistical techniques are employed for trend analysis. Results indicate that the rainfall trend is significant in January, July, August, September as well as the Winter season. Among all the significant trends, January and July showed a decreasing rainfall trend. July has the highest contribution (30%) among all the obtained monotonic trend to annual rainfall and coincidentally has the highest trend magnitude. August and September months with a combined contribution of 30% to annual rainfall, show an increasing monotonic trend with high magnitude whereas Winter season shows a monotonic decreasing rainfall trend with comparatively low magnitudes. Decadal analysis along with the study of recurrence interval of excess and deficit years helps to understand the decadal rhythm of trend and the magnitude of extreme monthly and seasonal events. Skewness reveals that rainfall dataset of all the periodic results is right-skewed and the recurrence interval also supports the skewness results. Sharply decreasing rainfall in July and rising rainfall in August and September is predictive of the impact on agriculture, biodiversity and indicates the rainfall regime shift in the region.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Fakhri Alam ◽  
Muhammad Salam ◽  
Nasir Ahmad Khalil ◽  
Owais khan ◽  
Masaud Khan

AbstractClimate change is a multidimensional phenomenon, which has various effects on people's environmental and socioeconomic conditions. In the agricultural economy that is susceptible to natural changes, its impact is more profound. Therefore, climate change directly affects society in different ways, and society must pay a price. Climate change, especially the changes in annual temperature and rainfall, has attracted widespread attention worldwide. The variability of these factors or the magnitude of fluctuations varies according to location. Therefore, in the context of climate change, especially in countries dominated by rainfed agriculture, studying the trend of meteorological variables is essential to assess climate-induced variations and propose feasible adaptation approaches. Focusing on this fact is the main goal of this research study was to determine the rainfall trend and the accuracy of predicted temperature at three particular stations of Khyber Pakhtunkhwa (Kp) Province, Pakistan. For this purpose, rainfall and temperature data were provided by Pakistan Meteorological Department (PMD), Islamabad, for the period 1960–2020. Two types of nonparametric techniques, Sen’s slope estimate and the Mann–Kendall test, were applied to determine a trend in the average monthly and annual rainfall. The results of the annual rainfall trend analysis showed that Peshawar and Dera Ismail Khan stations showed a positive increasing trend, while the monthly rainfall trend showed a negative decreasing trend for all stations. The trend was statistically significant for Peshawar and Saidu Sharif stations. The accuracy of predicted and actual temperature and rainfall indicated that mostly over-forecast occurred at Saidu Sharif and Peshawar. Most of the precipitation and temperature records showed under forecast for Dera Ismail Khan, but some over-prediction has also occurred. Graphical abstract


2021 ◽  
Author(s):  
Ibrahim NJOUENWET ◽  
Lucie A. Djiotang Tchotchou ◽  
Brian Odhiambo Ayugi ◽  
Guy Merlin Guenang ◽  
Derbetini A. Vondou ◽  
...  

Abstract The Sudano-Sahelian region of Cameroon is mainly drained by the Benue, Chari and Logone rivers, which are very useful for water resources, especially for irrigation, hydropower generation, and navigation. Long-term changes in mean and extreme rainfall events in the region may be of crucial importance in understanding the impact of climate change. Daily and monthly rainfall data from twenty-five synoptic stations in the study area from 1980 to 2019 and extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) measurements were estimated using the non-parametric Modified Mann-Kendall test and the Sen slope estimator. The precipitation concentration index (PCI), the precipitation concentration degree (PCD), and the precipitation concentration period (PCP) were used to explore the spatio-temporal variations in the characteristics of rainfall concentrations. An increase in extreme rainfall events was observed, leading to an upward trend in mean annual. Trends in consecutive dry days (CDD) are significantly increasing in most parts of the study area. This could mean that the prevalence of drought risk is higher in the study area. Overall, the increase in annual rainfall could benefit the hydro-power sector, agricultural irrigation, the availability of potable water sources, and food security.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Tarek Merabtene ◽  
Mohsin Siddique ◽  
Abdallah Shanableh

Although a few studies on rainfall spatial and temporal variability in the UAE have been carried out, evidence of the impact of climate change on rainfall trends has not been reported. This study aims at assessing the significance of long-term rainfall trends and temporal variability at Sharjah City, UAE. Annual rainfall and seasonal rainfall extending over a period of 81 years (1934–2014) recorded at Sharjah International Airport have been analyzed. To this end, several parametric and nonparametric statistical measures have been applied following systematic data quality assessment. The analyses revealed that the annual rainfall trend decreased from −3 mm to −9.4 mm per decade over the study periods. The decreasing annual rainfall trend is mainly driven by the significant drop in winter rainfall, particularly during the period from 1977 to 2014. The results also indicate that high probability extreme events have shifted toward low frequency (12.7 years) with significant variations in monthly rainfall patterns and periodicity. The findings of the present study suggest reevaluating the derivation of design rainfall for infrastructure of Sharjah City and urge developing an integrated framework for its water resources planning and risk under climate change impacts scenarios.


2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Richard A. Giliba ◽  
Issa H. Mpinga ◽  
Sood A. Ndimuligo ◽  
Mathew M. Mpanda

Abstract Background Climate change creates opportune conditions that favour the spread of pests and diseases outside their known active range. Modelling climate change scenarios is oftentimes useful tool to assess the climate analogues to unveil the potential risk of spreading suitability conditions for pests and diseases and hence allows development of appropriate responses to address the impending challenge. In the current study, we modelled the impact of climate change on the distribution of Varroa destructor, a parasitic mite that attacks all life forms of honey bees and remains a significant threat to their survival and productivity of bee products in Tanzania and elsewhere. Methods The data about the presence of V. destructor were collected in eight regions of Tanzania selected in consideration of several factors including potentials for beekeeping activities, elevation (highlands vs. lowlands) and differences in climatic conditions. A total of 19 bioclimatic datasets covering the entire country were used for developing climate scenarios of mid-century 2055 and late-century 2085 for both rcp4.5 and rcp8.5. We thereafter modelled the current and future risk distribution of V. destructor using MaxEnt. Results The results indicated a model performance of AUC = 0.85, with mean diurnal range in temperature (Bio2, 43.9%), mean temperature (Bio1, 20.6%) and mean annual rainfall (Bio12, 11.7%) as the important variables. Future risk projections indicated mixed responses of the potential risk of spreads of V. destructor, exhibiting both decrease and increases in the mid-century 2055 and late-century 2085 on different sites. Overall, there is a general decline of highly suitable areas of V. destructor in mid- and late-century across all scenarios (rcp4.5 and rcp8.5). The moderately suitable areas indicated a mixed response in mid-century with decline (under rcp4.5) and increase (under rcp8.5) and consistent increase in late century. The marginally suitable areas show a decline in mid-century and increase in late-century. Our results suggest that the climate change will continue to significantly affect the distribution and risks spread of V. destructor in Tanzania. The suitability range of V. destructor will shift where highly suitable areas will be diminishing to the advantage of the honey bees’ populations, but increase of moderately suitable sites indicates an expansion to new areas. The late century projections show the increased risks due to surge in the moderate and marginal suitability which means expansion in the areas where V. destructor will operate. Conclusion The current and predicted areas of habitat suitability for V. destructor’s host provides information useful for beekeeping stakeholders in Tanzania to consider the impending risks and allow adequate interventions to address challenges facing honey bees and the beekeeping industry. We recommend further studies on understanding the severity of V. destructor in health and stability of the honey bees in Tanzania. This will provide a better picture on how the country will need to monitor and reduce the risks associated with the increase of V. destructor activities as triggered by climate change. The loss of honey bees’ colonies and its subsequent impact in bees’ products production and pollination effect have both ecological and economic implications that need to have prioritization by the stakeholders in the country to address the challenge of spreading V. destructor.


2014 ◽  
Vol 8 (2) ◽  
pp. 163-169
Author(s):  
Maria Nedealcov ◽  
Dumitru Drumea

Abstract The accelerating pace of climate change mainly on the adjacent territory of the Danube basin, contribute to the essential eutrophication of water basins within the region. The results indicate that air temperature recorded a double warming compared to territories from the central part of the country. On the background the accelerated warming there is a declining trend and of annual rainfall amounts. These climate changes, especially in recent decades have led to significant increase of water temperature in rivers and lakes. Thus, it constituted in the years 1990-2000 by 0.7 and 1.50C compared to the period 1980-1990, and by 1.0...2,00C accordingly in the years 2000-2013 compared to the previous decade. The significant increase of temperature during the last decade contributed to the intensification of algae growth and together with other factors contributed to the increase by about 20% of the nitrogen content, thus ensuring the ―flowering‖ with 50% of the water bodies’ volume.


2021 ◽  
Vol 23 (1) ◽  
pp. 20-27
Author(s):  
Cilcia Kusumastuti ◽  
Dicky Gode ◽  
Yobella Febe Kurnianto ◽  
Frederik Jones Syaranamual

Climate change impacts have gained great attention to be studied in various fields. In this paper, an investigation of rainfall pattern change is performed using three statistical methods, i.e., simple linear regression, t-test, and Mann-Kendall’s test. The analysis is performed at 10- and 20-year time scales of daily, monthly, and annual rainfall in Flores Island, a dry region in Indonesia. In general, an increasing monthly rainfall trend is detected in the rainy season (October – April) at a 20-year period, using all three methods. Specifically, a significant increasing trend in March 1989 – 2008 is observed, and it contributes to the significant increasing trend of annual rainfall.  The findings presented in this paper should be an alert for potential climate change impacts in the region. The positive consideration of having more rainfall in a dry region might turn into a negative reality when adaptation measures are not well-prepared.


2021 ◽  
Vol 325 ◽  
pp. 08010
Author(s):  
Gita Ivana Suci Lestari Faski ◽  
Ignasius Loyola Setyawan Purnama

Global climate change that occurred in this century can affect the pattern of rain and increase in temperature on earth. This study aims to determine and analyze the increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu watershed. For this reason, the regional rainfall is calculated using the Thiessen Polygon, the mean air temperature of the watershed based on the median elevation, potential evapotranspiration using the Thornthwaite Method and actual evapotranspiration using the basis of the difference in rainfall to potential evapotranspiration. The results showed that every year there was an increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu Watershed. In the 2009-2013 period, the average annual rainfall of 3,581 mm increased to 3,641 mm in the 2014-2018 period. For air temperature, the average monthly air temperature in the Bengkulu Watershed for the 2009-2013 period was 25.8°C, while the air temperature in the 2014-2018 period was 26.1°C. This means that in a period of 5 years there is an increase in temperature of 0.3°C. Furthermore, due to the increase in air temperature, there was an increase in the average monthly potential evapotranspiration from the 2009-2013 period to the 2014-2018 period, namely from 1,493 mm to 1,537 mm, while for actual evapotranspiration there was an increase from 1,486 mm to 1,518 mm.


Author(s):  
Femi S. Omotayo ◽  
Philip G. Oguntunde ◽  
Ayorinde A. Olufayo

This study was carried to determine the trend of cocoa yield and climatic variables and assessment of the impact of climate change on the future yield of cocoa in Ondo State, Nigeria. Annual trend statistics for cocoa yield and climatic variables were analyzed for the state using Mann-Kendall test for trend and Sen’s slope estimates. Downscaled data from six Global Circulation Models (GCMs) were used to examine the impact of climate change on the future yield of cocoa in the study area. The results of trends analysis in Ondo State showed that yield decreased monotonically at the rate of 492.18 tonnes/yr (P<0.05). An increased significant trend was established in annual rainfall trend. While Maximum temperature, minimum temperature, and mean temperature all increased at the rate of 0.02/yr (P<0.001). The ensemble of all the GCMs projected a mid-term future decrease of about 9,334 tonnes/yr by 2050 and a long-term future decrease of 13,504 tonnes/yr of cocoa by 2100. The economic implication of these is that, if the projected change in the yield of cocoa as predicted by the ensemble of all the GCMs should hold for the future, it means that Ondo state may experience a loss of about $22,470,018.22 and $32,308,584.32 by the year 2050 and 2100 respectively according to the present price of the commodity in the world market. Measures are to be taken by the government and farmers to find a way of mitigating the impacts of climate change on the future yield of the cocoa study area. This research should be extended to other cocoa producing areas in Nigeria.


Sign in / Sign up

Export Citation Format

Share Document