Effect of interface control on tensile strength of fillers originated from inedible food components / thermoplastic resin composite materials.

2020 ◽  
Vol 2020.57 (0) ◽  
pp. R021
Author(s):  
Ryo MURAKAMI ◽  
Mototsugu TANAKA ◽  
Isao KIMPARA
1990 ◽  
Vol 16 (2) ◽  
pp. 48-52
Author(s):  
Haruyoshi SAIGOKU ◽  
Kiyoshi TSUCHIYA ◽  
Takashi NAGUMO ◽  
Takashi ISHIKAWA

2014 ◽  
Vol 490-491 ◽  
pp. 284-287
Author(s):  
Yong Hua Sheng

Recently, as the development of thermoplastic resin with excellent property and forming process of thermoplastic resin composite material, research of thermoplastic resin becomes a hot issue in related areas. Comparing with common composite material, thermoplastic resin composite material has many advantages, such as, excellent impacting resistance and many processes. So, more and more researchers focus in thermoplastic resin composite material. In this article, applications of carbon fiber strengthen thermoplastic resin composite materials are comprehensive.


Author(s):  
Michael Wendler ◽  
Anja Stenger ◽  
Julian Ripper ◽  
Eva Priewich ◽  
Renan Belli ◽  
...  

Composites ◽  
1988 ◽  
Vol 19 (4) ◽  
pp. 300-310 ◽  
Author(s):  
S. Lee ◽  
R.F. Scott ◽  
P.C. Gaudert ◽  
W.H. Ubbink ◽  
C. Poon

2007 ◽  
Vol 26 (5) ◽  
pp. 613-622 ◽  
Author(s):  
Masahiro ONO ◽  
Toru NIKAIDO ◽  
Masaomi IKEDA ◽  
Susumu IMAI ◽  
Nobuhiro HANADA ◽  
...  

2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


Author(s):  
M. Chomiak

Purpose: of this paper is to develop a new generation of polymer composite materials that would ensure the use of residual and serious environmental problems of polyester-glass laminate waste. Design/methodology/approach: The glass reinforced polyester waste was ground and added to produce new composites. Thermoplastic - high impact polystyrene was selected for the composite matrix. Composites containing 10, 20, 30% by weight of the filler of polyester-glass laminate powder were made. The process of extrusion and subsequent injection was used to prepare the test samples. The influence of the filler on selected properties of composites was evaluated. The physical properties of the filler as well as the processing properties of the mixture as well as the mechanical properties - impact strength and tensile strength of the obtained composites were investigated. Findings: A decrease in tensile strength and impact strength was observed along with an increase in the amount of filler. Research limitations/implications: It would be interesting to carry out further analyzes, in particular with a higher volume fraction of the filler or with a different composite structure, e.g. using PVC as a matrix. The developed research topic is a good material for the preparation of publications of a practical and scientific nature, especially useful in the research and industrial environment. Practical implications: The shredded glass-polyester waste can be used as a filler of polystyrene, however, the resulting composite could be used to produce parts with slightly less responsible functions such as artificial jewelery or toy elements. Originality/value: Obtained results are a new solution a global waste management solution for glass reinforced polyester waste, which may contribute to the sustainable development of the composite materials industry through the partial utilization of waste composites with a duroplastic matrix.


Dental Update ◽  
2008 ◽  
Vol 35 (9) ◽  
pp. 600-606 ◽  
Author(s):  
Stephen J Bonsor

2018 ◽  
Vol 53 (13) ◽  
pp. 1815-1826
Author(s):  
Sheng Cai Tan ◽  
Jimmy KW Chan ◽  
Kian Ping Loh

This paper aims to investigate the effect of co-milling-assisted exfoliation of graphite into polyethylene and alumina matrices on the mechanical properties of the composites. Tensile mechanical properties of composite materials based on polyethylene reinforced with graphite and graphite-derived fillers at 0–0.75 wt% loading were investigated, while hardness and flexural properties of alumina composites with 0.25 wt% loading of the same additives were assessed. Exfoliated graphite, applied at 0.25–0.75 wt% in pre-exfoliated form or in a co-milling-assisted fashion, has been demonstrated to be effective in enhancing the tensile strength of polyethylene composites. Similar enhancement in hardness and flexural properties was observed in alumina composites with 0.25 wt% loading of the exfoliated graphite. Co-milling-assisted exfoliated graphite nanoplatelets additive introduction has been found to effect a more desirable mechanical properties enhancement in the composites investigated in this study.


Sign in / Sign up

Export Citation Format

Share Document