S114011 Analysis of the friction characteristics of oil impregnated sintered bearing and the fluidity of lubricating oil in below freezing conditions : Relationship between the permeability of the bearing and oil film condition in bearing clearance

2013 ◽  
Vol 2013 (0) ◽  
pp. _S114011-1-_S114011-5
Author(s):  
Hiroyuki YOSHIDA ◽  
Satoru KANEKO ◽  
Hiroo TAURA

Journal bearing friction experiments have been made generally at relatively low temperatures and otherwise in conditions tending to prevent oxidation of the lubricating oil. Thus Beauchamp Tower’s experiments led Reynolds to the conclusion that fluid friction alone prevails in an oil film maintained by continuous rotation of the journal and that boundary conditions do not become sensible. The more recent experiments by Stanton, undertaken after the Physical Society discussion of 1919, were made to verify the conclusion, and confirmed that especially for mineral oils, “the conditions were in all cases those of perfect lubrication ( i. e ., complete fluid lubrication), no approximation to the hypothetical ones of boundary lubrication being observed,” “the conditions of lubrication of a cylindrical journal being of the Reynolds’ type right up to the seizing pressure. Stanton’s experimental conditions were such that oxidation effects were not obtained. The feed to the journal bearing was always by fresh, not circulated, oil and the temperature of the oil film was maintained at 51·6° C., i. e ., at least 50° lower than required to induce oxidation in a mineral oil particularly susceptible to the effect. The possibility that oxidation might lead to boundary conditions becoming a factor in the measurements was not considered. Oxidation of the oil used to lubricate internalcombustion engines cannot be avoided in the usual conditions of operation, and an investigation of the effect on lubricating value was begun, in connection with experiments made in association with Professor Callendar, on the oxidation of the lighter oils used as engine fuel. The results of lubrication experiments made directly on engines were difficult to interpret. The friction measured is mainly that due to the reciprocating motion of the pistons in the cylinders and oxidation being uncontrolled, the resulting accumulation of semisolid products leads to secondary friction effects greater in magnitude than the primary effect attributable to the fluid alone. The conditions of journal bearing lubrication, on the other hand, can be controlled and friction measured with fair accuracy and it appeared therefore that the investigation could be continued most effectively by using journal bearing testing machines. Machines adapted to be run at the relatively high temperature required for the oxidation of mineral oils had been designed at the N. P. L. by Mr. C. Jakeman in association with whom the experiments were continued, by permission of the authorities concerned.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Dexing Hu ◽  
Qianhao Xiao ◽  
Shun Zhao

Purpose This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film thickness under textured conditions. Design/methodology/approach The laser processing method was used to make the micro-texture on the surface of GCr15 steel rollers; lithium grease was used as the lubricant, and line-contact elastohydrodynamic grease lubrication experiments under pure sliding conditions were performed on light interference elastohydrodynamic-lubricated experimental table. Findings The results show that the line-contact elastohydrodynamic grease lubrication is closely related to the textured crown width of steel rollers. At low speeds and light loads, texturing has an inevitable inhibitory effect on the formation of the lubricating oil film, and the smaller the width of the crown area, the more obvious the inhibitory effect, which is not conducive to the improvement of the lubrication condition. At high speeds and high loads, the textured roller with dw = 1 mm has the largest oil film thickness and shows better lubrication performance. Originality/value At present, there is little research on the surface texture of line-contact friction pairs. This work explores the effect of different textured crown width on the lubricating properties of line-contact elastohydrodynamic grease lubrication by experiment. It provides a new theoretical basis for the subsequent practical application of surface texture technology.


2019 ◽  
Vol 71 (1) ◽  
pp. 146-153
Author(s):  
Yanqin Zhang ◽  
Zhiquan Zhang ◽  
Xiangbin Kong ◽  
Rui Li ◽  
Hui Jiang

Purpose The purpose of this paper was to obtain the lubrication characteristics of heavy hydrostatic bearing in heavy equipment manufacturing industry through theoretical analysis and numerical simulation. Design/methodology/approach This paper discusses the influence of oil film thickness variation on velocity field, outlet-L and outlet-R flow velocity under the hydrostatic bearing running in no-load 0 N, load 400 KN, full load 1,500 KN and rotating speeds of 10 r/min, 20 r/min, 30 r/min, 40 r/min, 50 r/min and 60 r/min, by using dynamic mesh technology and FLUENT software. Findings When the working table rotates clockwise, in the change process of oil film thickness, the fluid flow pattern of the lubricating oil at the edge of the sealing oil is the rule of laminar flow, and the oil cavity has a vortex. The outlet-R flow velocity becomes higher and higher by increasing the bearing load and working table speed, and the flow velocity increases with the decrease in oil film thickness; the outlet-L flow velocity increases with the decrease in oil film thickness under low rotating speed (less than 10 r/min) condition and decreases with the decrease of oil film thickness under high rotating speed (more than 60 r/min) condition. Originality/value The influence of the oil film thickness on the flow state distribution of the oil film was analyzed under different working conditions, and the influence rules of oil film thickness on the flow velocity of hydrostatic bearing oil pad was obtained by using dynamic mesh technology.


Author(s):  
FA Najar ◽  
GA Harmain

This paper describes the design and development of a test rig, for the experimental assessment of performance characteristics of thrust bearing used in hydro power plants. This test rig has features to study experimentally the conventional pad-based thrust bearing and the newly designed water cooling enabled pad. In this paper, a cooling circuit designated as Circuit-I has been installed and then testing is performed. The shaft speed and axial load has been set at 1400 r/min and 5.0 kN. The lubricating oil used SAE-30 and inlet temperature of oil was maintained at 40℃. The main focus of the present work is to compute the influence on the temperature distribution in the oil film on the top surface of the pad with the embodiment of cooling circuit arrangement. From the experimental results, the overall reduction in the oil film temperature or on the top surface of the pad has been found to be 14% when the conventional thrust bearing set up is replaced by water cooling enabled pad of this kind.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1474
Author(s):  
Heyun Bao ◽  
Tongjing Xu ◽  
Guanghu Jin ◽  
Wei Huang

The working principle and motion process of an aviation wet clutch are analyzed. The initial velocity before the friction pair engaged is solved. The transient Reynolds equation is modified, and an oil film bearing capacity model and a micro-convex bearing capacity model are derived. The film thickness equation between N friction pairs and a pressure-plate is derived. A dynamic engaged model of springs, pistons, friction pairs, and pressure plates are established. The torque balance equation is established of two pairs of friction pairs. The friction torque, rate of change in the oil film, and law of relative change in speed are obtained. The results demonstrate that the spring preload and the viscosity of the lubricating oil have a significant influence on the engagement characteristics. Increasing the quality of the friction plate will reduce the time of engagement, whereas the quality of the friction plate has slight effect on the friction torque characteristics and oil film thickness. The initial speed generated by the collision process will reduce the output speed, sharply increase the torque peak at the lock, and increase the shift shock.


Sign in / Sign up

Export Citation Format

Share Document