Impact Damage Monitoring of Composite Structures Using Piezoelectric Sensors

2004 ◽  
Vol 2004.6 (0) ◽  
pp. 249-250
Author(s):  
Hisao FUKUNAGA ◽  
Ning HU
Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 511
Author(s):  
Adadé Seyth Ezéckiel Amouzou ◽  
Olivier Sicot ◽  
Ameur Chettah ◽  
Shahram Aivazzadeh

This work is motivated by increasingly used of composite structures under severe loading conditions. During their use, these materials are often subjected to impact as for example, in the aeronautical field the fall of hailstone on structure composites. In fact, the low energy traditional impact tests don’t allow to see the evolution of the damage and don’t permit also to compare the best tolerance to impact between different stratifications. The multi-impact tests made it possible to find a solution to this problem. In this work, multi-impact tests are performed on three carbon/epoxy stratifications. The final goal is to predict the durability of the composite structures during impact loading for their design. This study brings to light the response of multi-impact tests through force-time and force-displacement curves obtained experimentally. On the other hand, a parameter D has introduced following the experimental results. This made it possible to rank the three stratifications from their tolerance to multi-impact tests. To evaluate the post impact damage, ultrasonic testing techniques are used. The results allow to find the relationship between the damaged surface obtained by the ultrasonic control and the parameter D and to rank the three laminates configurations.


2015 ◽  
Author(s):  
Gerges Dib ◽  
Ermias Koricho ◽  
Oleksii Karpenko ◽  
Mahmood Haq ◽  
Lalita Udpa ◽  
...  

Author(s):  
John Wertz ◽  
Laura Homa ◽  
John Welter ◽  
Daniel Sparkman ◽  
John C. Aldrin

The U.S. Air Force seeks to improve lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of ultrasound inspection data; however, the computational expense of simulating the response from damage represents a major hurdle for practicality. A surrogate forward model with greater computational efficiency and sufficient accuracy is, therefore, critical to enable damage characterization via model-based inversion. In this work, a surrogate model based on Gaussian process regression (GPR) is developed on the chirplet decomposition of the simulated quasi-shear scatter from delamination-like features that form a shadowed region within a representative composite layup. The surrogate model is called in the solution of the inverse problem for the position of the hidden delamination, which is achieved with <0.5% error in <20 min on a workstation computer for two unique test cases. These results demonstrate that solving the inverse problem from the ultrasonic response is tractable for composite impact damage with hidden delaminations.


2018 ◽  
Vol 18 (1) ◽  
pp. 318-333 ◽  
Author(s):  
Aggelos G Poulimenos ◽  
John S Sakellariou

Oftentimes, the complexity in manufacturing composite materials leads to corresponding structures which although they may have the same design specifications they are not identical. Thus, composite parts manufactured in the same production line present differences in their dynamics which combined with additional uncertainties due to different operating conditions may lead to the complete concealment of effects caused by small, incipient, damages making their detection highly challenging. This damage detection problem in nominally identical composite structures is pursued in this study through a novel data-based response-only methodology that is founded on the autoregressive with exogenous (ARX) excitation parametric representation of the transmittance function between vibration measurements at two different locations on the structure. This is a statistical time series methodology within which two schemes are formulated. In the first, a single-reference transmittance model representing the healthy structure is employed, while multiple transmittance models from a sample of available healthy structures are used in the second. The model residual signal constitutes for both schemes the damage detection characteristic quantity that is used in appropriate hypothesis testing procedures with the likelihood ratio test. The methodology is experimentally assessed via damage detection for a population of composite beams which are manufactured in the same production line representing the half of the tail of a twin-boom unmanned aerial vehicle. The damage detection results demonstrate the superiority of the multiple transmittance models based scheme that may effectively detect damages under significant manufacturing variability and varying boundary conditions.


2012 ◽  
Vol 525-526 ◽  
pp. 365-368
Author(s):  
Chun Lin Chen ◽  
Yu Long Li ◽  
Fuh Gwo Yuan

Based on the self-focusing property of time-reversal (T-R) concept, a time focusing parameter was suggested to improve the impact source identification method developed in authors previous work. This paper presents a further study on monitoring relatively high energy impact events which caused induced damage on structures. Numerical verifications for a finite isotropic plate and a composite plate under low velocity impacts are performed to demonstrate the versatility of T-R method for impact location detection with induced plastic deformation and delamination damage on metallic and composite structures respectively. The focusing property of T-R concept was adequately utilized to detect impact/damage location. The results show that impact events with various features can be localized using T-R method by introducing the time focusing parameter. It is suited to monitor serious impact events on plate like structures in practice in future.


Sign in / Sign up

Export Citation Format

Share Document