scholarly journals E35 Studies of tool wear mechanism by cutting temperature simulation in machining of single-crystal silicon

2008 ◽  
Vol 2008.7 (0) ◽  
pp. 317-318
Author(s):  
Tsutomu OHTA ◽  
Sunao KODERA ◽  
Shuuma YAJIMA ◽  
Jiwang YAN ◽  
Tsunemoto KURIYAGAWA
2008 ◽  
Vol 389-390 ◽  
pp. 144-150 ◽  
Author(s):  
Tsutomu Ohta ◽  
Ji Wang Yan ◽  
Sunao Kodera ◽  
Shuuma Yajima ◽  
Naoyuki Horikawa ◽  
...  

The service life of a diamond tool in cutting single-crystal silicon is normally very short because of severe tool wear. Therefore, it is important to use a proper coolant in order to restrain tool wear. In this paper, the performances of oil-based and water-based coolants were compared in silicon machining by investigating cutting forces and tool wear geometries. The water-based coolant was found to restrain flank wear more effectively than the oil-based one. The effective tool life using the water-based one was averagely three times longer than that using the oil-based one. The tool wear mechanism might be related to microplasma generated between silicon and diamond during cutting.


Author(s):  
Aruna Prabha Kolluri ◽  
Srinivasa Prasad Balla ◽  
Satya Prasad Paruchuru

Abstract The 3D Finite element method (FEM) is an efficient tool to predict the variables in the cutting process, which is otherwise challenging to obtain with the experimental methods alone. The present study combines both experimental findings and finite element simulation outcomes to investigate the effect of tool material on output process variables, such as vibrations, cutting temperature distribution and tool wear mechanism. Machining of popular aerospace materials like Ti-6Al-4V and Al7075 turned with coated and uncoated tools are part of the investigation. The authors choose the orthogonal test, measured vibrations and cutting temperatures and used FE simulations to carry out the subsequent validations. This study includes the influence of the predicted heat flux and temperature distribution on the tool wear mechanism. The main aim of this study is to investigate the performance quality of uncoated and coated carbide tools along with its thermal aspects. Comparison of experiment and simulation outcomes shows good agreement with a maximum error of 9.02%. It has been noted that the increase of cutting temperature is proportional to its cutting speed. As the cutting speed increases, it is observed that vibration parameter and flank wear value also increases. Overall, coated carbide turning insert tool is the best method for metal turning with higher rotational speeds of the spindle.


2016 ◽  
Vol 826 ◽  
pp. 93-98 ◽  
Author(s):  
Pravin Pawar ◽  
Sandip Patil ◽  
Swapnil Kekade ◽  
Swapnil Pawar ◽  
Rajkumar Singh

Titanium alloys are referred to difficult-to-cut materials because of its some inferior properties like low thermal conductivity and high chemical reactivity. To improve machinability of these alloys one way is to use cutting fluids which removes the heat generated at the chip tool interface during the machining process. But coolant with low pressure and improper delivery is not able to break the vapor barrier created by high cutting temperature. The present work investigates the effect of using high pressure coolant system (50 Bar) on machinability of Ti6Al4V. The machinability was measured in terms of tool wear. The dominant tool wear mechanism was investigated by using scanning electron microscopy and energy dispersive X-ray analysis of worn out cutting tool surfaces. Abrasion wear on flank face and crater wear on the rake face was observed as a dominant tool wear mechanism. Along with this diffusion of titanium from the work surface to tool face is also confirmed.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document