1A1-D08 Mode Switching Control Method Using Position Based Impedance Control

2008 ◽  
Vol 2008 (0) ◽  
pp. _1A1-D08_1-_1A1-D08_2 ◽  
Author(s):  
Yosuke SUZUKI ◽  
Yoshifumi MORITA ◽  
Susumu HARA
2020 ◽  
Vol 26 (19-20) ◽  
pp. 1804-1814
Author(s):  
Renkai Ding ◽  
Ruochen Wang ◽  
Xiangpeng Meng ◽  
Long Chen

To coordinate the contradictory relationship between dynamic performances and electrical energy consumption of an electromagnetic active suspension, a hybrid electromagnetic actuator that integrates with a linear motor and a hydraulic damper is developed, which can achieve active control and energy regeneration compared with the linear electromagnetic actuator. A mode-switching control method is put forward based on the modified skyhook control. The stability of the switched controller with a specific switching rule is investigated based on the Lyapunov theorem. Then, the switching control system of a hybrid electromagnetic actuator is designed. Finally, a linear electromagnetic actuator and a passive damper are taken as comparison objects, and comparative bench tests, including a dynamic performance test and an energy consumption test, are conducted. The test results show that the hybrid electromagnetic actuator with mode-switching control can balance the dynamic performances and electrical energy consumption effectively.


2010 ◽  
Vol 439-440 ◽  
pp. 325-330 ◽  
Author(s):  
Ke Jun Li ◽  
Jian Guo Zhao ◽  
Lin Niu ◽  
Cheng Hui Zhang

The mode-switching control method of thyristor controlled series capacitor (TCSC) is of great importance to power system stability. It is very difficult, if not impossible, to realize mode-switching only by changing firing angles. Considering the impedance characteristics of TCSC, a set of mode-switching control methods is proposed. Simulation and experimental results show that the proposed switching method can make the switching process faster and possess better dynamic performance.


2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


2011 ◽  
Vol 520 (4) ◽  
pp. 1178-1181 ◽  
Author(s):  
Yu Muto ◽  
Nobuto Oka ◽  
Naoki Tsukamoto ◽  
Yoshinori Iwabuchi ◽  
Hidefumi Kotsubo ◽  
...  

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Min Zheng ◽  
Tangqing Yuan ◽  
Tao Huang

In order to guarantee the passivity of a kind of conservative system, the port Hamiltonian framework combined with a new energy tank is proposed in this paper. A time-varying impedance controller is designed based on this new framework. The time-varying impedance control method is an extension of conventional impedance control and overcomes the singularity problem that existed in the traditional form of energy tank. The validity of the controller designed in this paper is shown by numerical examples. The simulation results show that the proposed controller can not only eliminate the singularity problem but can also improve the control performance.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document