scholarly journals Mode Switching Control Method for Man-Machine Collaborated Robotic Systems (Switching from Power-Assist Mode to Automatic Positioning Mode)

2007 ◽  
Vol 1 (1) ◽  
pp. 12-23
Author(s):  
Susumu HARA
2020 ◽  
Vol 26 (19-20) ◽  
pp. 1804-1814
Author(s):  
Renkai Ding ◽  
Ruochen Wang ◽  
Xiangpeng Meng ◽  
Long Chen

To coordinate the contradictory relationship between dynamic performances and electrical energy consumption of an electromagnetic active suspension, a hybrid electromagnetic actuator that integrates with a linear motor and a hydraulic damper is developed, which can achieve active control and energy regeneration compared with the linear electromagnetic actuator. A mode-switching control method is put forward based on the modified skyhook control. The stability of the switched controller with a specific switching rule is investigated based on the Lyapunov theorem. Then, the switching control system of a hybrid electromagnetic actuator is designed. Finally, a linear electromagnetic actuator and a passive damper are taken as comparison objects, and comparative bench tests, including a dynamic performance test and an energy consumption test, are conducted. The test results show that the hybrid electromagnetic actuator with mode-switching control can balance the dynamic performances and electrical energy consumption effectively.


2010 ◽  
Vol 439-440 ◽  
pp. 325-330 ◽  
Author(s):  
Ke Jun Li ◽  
Jian Guo Zhao ◽  
Lin Niu ◽  
Cheng Hui Zhang

The mode-switching control method of thyristor controlled series capacitor (TCSC) is of great importance to power system stability. It is very difficult, if not impossible, to realize mode-switching only by changing firing angles. Considering the impedance characteristics of TCSC, a set of mode-switching control methods is proposed. Simulation and experimental results show that the proposed switching method can make the switching process faster and possess better dynamic performance.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


2020 ◽  
Vol 58 (3) ◽  
pp. 697-710
Author(s):  
Xiangpeng Meng ◽  
Renkai Ding ◽  
Zeyu Sun ◽  
Ruochen Wang ◽  
Long Chen

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Xiaojian Wu ◽  
Xiang Qiu ◽  
Bing Zhou ◽  
Juhua Huang ◽  
Tingfang Zhang

The parameter sensitivity analysis of a hydraulically interconnected suspension (HIS) system shows that the sensitivity of the vibration responses in the bounce and roll modes to the hydraulic parameters are complementary. A novel HIS-based semiactive control method was thereby proposed to improve ride comfort and antiroll performance. In addition, the classic sky-hook max-min damping switched strategy provides significant benefits around the body resonance, but otherwise performs similarly to, or sometimes even worse than, passive suspension. Therefore, a dual-frequency-range switching strategy, which has optimal max-min damping in both frequency ranges, was developed for improving the ride comfort in a wider frequency bandwidth. In this study, a 9-DOF HIS system dynamics model was established, and the hydraulically interconnected subsystem model was validated experimentally. Subsequently, the elastic and damping characteristics of the hydraulically interconnected subsystem, as well as the parameter sensitivity in bounce mode and roll mode, were analyzed. Next, the sensitive parameters were optimized under sinusoidal excitation at various frequencies, and a frequency-range selector used to determine the excitation frequency range and adjust the shock absorber damping was designed. Finally, simulations in the frequency domain and time domain show that the proposed HIS-based semiactive dual-frequency-range switching control suspension improves the ride comfort in a wider frequency bandwidth and enhances the antiroll performance in the transient and steady steering process.


2020 ◽  
Vol 42 (16) ◽  
pp. 3135-3155
Author(s):  
Neda Nasiri ◽  
Ahmad Fakharian ◽  
Mohammad Bagher Menhaj

In this paper, the robust control problem is tackled by employing the state-dependent Riccati equation (SDRE) for uncertain systems with unmeasurable states subject to mismatched time-varying disturbances. The proposed observer-based robust (OBR) controller is applied to two highly nonlinear, coupled and large robotic systems: namely a manipulator presenting joint flexibility due to deformation of the power transmission elements between the actuator and the robot known as flexible-joint robot (FJR) and also an FJR incorporating geared permanent magnet DC motor dynamics in its dynamic model called electrical flexible-joint robot (EFJR). A novel state-dependent coefficient (SDC) form is introduced for uncertain EFJRs. Rather than coping with the OBR control problem for such complex uncertain robotic systems, the main idea is to solve an equivalent nonlinear optimal control problem where the uncertainty and disturbance bounds are incorporated in the performance index. The stability proof is presented. Solving the complicated robust control problem for FJRs and EFJRs subject to uncertainty and disturbances via a simple and flexible nonlinear optimal approach and no need of state measurement are the main advantages of the proposed control method. Finally, simulation results are included to verify the efficiency and superiority of the control scheme.


Sign in / Sign up

Export Citation Format

Share Document