306 A Note on the Shear Center : Thin-walled Cross Section

2000 ◽  
Vol 2000.49 (0) ◽  
pp. 143-144
Author(s):  
Hiroaki KATORI
2020 ◽  
Author(s):  
Xinlong Du ◽  
Jerome Hajjar

Asymmetric thin-walled sections such as steel angles and tees are widely used in truss structures and transmission towers. To address extreme limit states that these structures encounter due to extreme events such as hurricanes and earthquakes, it is important to capture their response due to large deformations caused by static or dynamic loading. In the nonlinear large deformation regime, these members have coupled axial-flexural-torsional deformation due to the so-called Wagner effect and the noncoincident shear center and centroid. A three-dimensional corotational total Lagrangian beam element is formulated and implemented in the OpenSees corotational framework to account for these coupling effects by invoking Green-Lagrange strains referenced to a basic system. In the basic system, shear forces and torque are defined with respect to the shear center, axial force is referred to the centroid, and flexure is defined around the section principle axes but in the planes containing the shear center. The element tangent stiffness matrix is derived through linearization of the governing equation obtained from the principle of virtual work. Cubic Hermitian functions for the transverse displacements and a linear shape function for the axial and torsional deformation are adopted in the development. Before conducting the corotational transformation, all element end forces and displacements are transformed to act about the shear center. In order to remedy membrane locking in the inextensional bending mode, the high order bending terms in the axial strain are replaced by a constant effective strain. Cyclic material nonlinearity is considered by discretizing the cross section into a grid of fibers, tracking the steel uniaxial stress-strain constitutive at each fiber, and performing numerical integration over the cross section to obtain the section stiffness matrix. The formulation is compared against a set of experimental and numerical results to validate that the element can model geometric and material nonlinearities accurately and efficiently.


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2003 ◽  
Vol 41 (10) ◽  
pp. 891-900 ◽  
Author(s):  
A.G Mamalis ◽  
D.E Manolakos ◽  
M.B Ioannidis ◽  
P.K Kostazos ◽  
C Dimitriou

2007 ◽  
Vol 45 (7-8) ◽  
pp. 699-705 ◽  
Author(s):  
F. Shadmehri ◽  
H. Haddadpour ◽  
M.A. Kouchakzadeh

2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2004 ◽  
Vol 76 (1) ◽  
pp. 45-66 ◽  
Author(s):  
Lorenzo Freddi ◽  
Antonino Morassi ◽  
Roberto Paroni

Sign in / Sign up

Export Citation Format

Share Document