scholarly journals Influence of Cementite Volume Fraction on Mechanical Properties and Fracture Toughness in Spheroidized Cementite Steel. Study on Fracture Behavior or Particulate-Reinforced Composite.

1993 ◽  
Vol 59 (563) ◽  
pp. 1617-1624 ◽  
Author(s):  
Keiichiro Tohgo ◽  
Hitoshi Ishii ◽  
Kiyoshi Hiramatsu ◽  
Naomori Suzuki ◽  
Hiroyasu Araki
2005 ◽  
Vol 297-300 ◽  
pp. 1516-1521 ◽  
Author(s):  
Keiichiro Tohgo ◽  
Takayuki Kawaguchi

In order to estimate distribution of mechanical properties and fracture toughness in ceramic-metal functionally graded materials (FGMs), mechanical properties and fracture behavior have been investigated on non-graded ceramics-metal composites which correspond to each region of FGMs. The materials are fabricated by powder metallurgy using partially stabilized zirconia (PSZ) and stainless steel (SUS 304). Vickers hardness, Young’s modulus and bending fracture strength were examined on smooth specimens. The Vickers hardness of the composites continuously decreases with an increase in a volume fraction of SUS 304 metal phase, while the Young’s modulus and fracture strength exhibit low values in the composites with balanced composition of each phase. This suggests that the interfacial strength between the ceramic and metal phases is very low. Fracture toughness tests are conducted by three-point-bending on rectangular specimens with a sharp edgenotch. In contrast with the Young’s modulus and fracture strength, the fracture toughness obtained for the composites increases with an increase in a volume fraction of SUS 304 metal phase. The fracture toughness of the composites is slightly lower than that obtained previously by stable crack growth in a PSZ-SUS 304 FGM. The difference in fracture toughness between the composites and FGM seems to be attributed to the residual stress created during fabrication of the FGM.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2509
Author(s):  
Seyed Mohammad Javad Razavi ◽  
Rasoul Esmaeely Neisiany ◽  
Moe Razavi ◽  
Afsaneh Fakhar ◽  
Vigneshwaran Shanmugam ◽  
...  

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
In-Jin Shon ◽  
In-Yong Ko ◽  
Seung-Hoon Jo ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Nanopowders of 3NiAl and Al2O3were synthesized from 3NiO and 5Al powders by high-energy ball milling. Nanocrystalline Al2O3reinforced composite was consolidated by high-frequency induction-heated sintering within 3 minutes from mechanochemically synthesized powders of Al2O3and 3NiAl. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. The relative density of the composite was 97%. The average Vickers hardness and fracture toughness values obtained were 804 kg/mm2and 7.5 MPa⋅m1/2, respectively.


2020 ◽  
Vol 837 ◽  
pp. 139-145
Author(s):  
Ai Jun Liu ◽  
Gang Li ◽  
Ning Liu ◽  
Ke Bei Chen ◽  
Hai Dong Yang

Effect of Ti (C,N) based cermets granule on the microstructure, mechanical properties, sintering and fracture behavior of Ti (C,N) based cermets was investigated. Results show that the Ti (C,N) based cermets granules distribute in the matrix homogeneously. A nanoindentation study was performed on hard phase and binder phase in the matrix and granule. With the increase of granules content, sintering properties is worse. With the increase of granules content, transverse rupture strength (TRS) and relative density decrease gradually, while the hardness has an opposite trend. The fracture toughness increases firstly with increasing granule, and then decreases with the further increase of granules. Higher fracture toughness of the cermets is mainly owing to the crack branch and higher fracture energy of coarse granule.


1995 ◽  
Vol 10 (3) ◽  
pp. 602-608 ◽  
Author(s):  
Hyun-Ho Shin ◽  
Randolph Kirchain ◽  
Robert F. Speyer

Additions of O to 9 mol % Ta2O5 to a lithia-alumina-silica glass-ceramic matrix Nicalon SiC-reinforced composite increased the elastic modulus and ultimate strength of the composite. The additive fostered sphereulitic growth of β-eucriptite solid solution crystals which concentrated Ta2O5 at sphereulite boundaries and adjacent to the fiber-matrix carbon-rich interphases. These regions reacted with the interphases as well as soluble carbon monoxide gas to convert them to TaC. The former reaction was shown to be thermodynamically favorable above 983 °C, while the latter was favorable above 1249 °C. The improvement in mechanical properties was attributed to TaC particulate reinforcement, and suggests a simple glass-ceramic route to the fabrication of particulate-reinforced ceramic matrix composites.


2011 ◽  
Vol 415-417 ◽  
pp. 2244-2247 ◽  
Author(s):  
Feng Yan ◽  
Rong Xin Guo ◽  
Hai Ting Xia ◽  
Hai Yu ◽  
Yu Bo Zhang

The copper matrix composites reinforced by different WCP volume fraction were fabricated via Vacuum Hot-pressed Sintering technique. The tensile performance and fracture behavior of WCP/Cu composites were studied by uniaxial tension tests and the fracture surfaces were examined by SEM. The test results of mechanical properties show that the WCP/Cu composites exhibit obvious improvement of tensile property comparing with that of the matrix. The fracture surface morphology indicate a trend that the fracture of WCP/Cu composites changes from debonding to cleavage with the increase of the WCP volume fraction.


2004 ◽  
Vol 842 ◽  
Author(s):  
Todd Reynolds ◽  
David Johnson

ABSTRACTAlloys of RuAl-Ru were processed using various solidification methods, and the fracture behavior was examined. The fracture toughness values for RuAl-hcp(Ru, Mo) and RuAl-hcp(Ru, Cr) alloys ranged from 23 to 38 MPa√m, while the volume fraction of RuAl ranged from 22 to 56 percent. Increasing the volume fraction of RuAl resulted in a decrease in fracture toughness. The hcp solid solution was shown to be the more ductile phase with a fracture toughness approaching 68 MPa?m, while the B2 solid solution (RuAl) was found to have a fracture toughness less than 13 MPa√m. An alloy of Ru-7Al-38Cr (at.%) that consisted of a hcp matrix with RuAl precipitates had the highest room temperature toughness and the greatest hardness.


2006 ◽  
Vol 317-318 ◽  
pp. 305-308 ◽  
Author(s):  
Rak Joo Sung ◽  
Takafumi Kusunose ◽  
Tadachika Nakayama ◽  
Yoon Ho Kim ◽  
Tohru Sekino ◽  
...  

A novel transparent polycrystalline silicon nitride was fabricated by hot-press sintering with MgO and AlN as additives. The mixed powder with 3 wt.% MgO and 9 wt.% AlN was sintered at 1900oC for 1 hour under 30 MPa pressure in a nitrogen gas atmosphere. Transparent polycrystalline silicon nitride was successfully fabricated. The mechanical properties such as density, hardness, young’s modulus, fracture strength and fracture toughness were evaluated. The effect of α/β phase on the mechanical properties of transparent polycrystalline silicon nitride was investigated. The properties were changed depending on the amount of α/β phase. The hardness and Young's modulus increased with increasing the volume fraction of α-phase fraction as a reflection of the higher hardness of α-phase Si3N4. The fracture toughness and fracture strength decreased with decreasing the volume fraction of β-phase Si3N4.


2005 ◽  
Vol 880 ◽  
Author(s):  
Andrew V. Kearney ◽  
Reinhold H. Dauskardt ◽  
Carol E. Mohler ◽  
Michael E. Mills

AbstractWe present surprising evidence that the fracture resistance of porous forms of poly(arylene) ether (PAE) films exhibit increasing fracture resistance with increasing porosity. Such behavior is in stark contrast to the fracture toughness of porous solids, which typically decrease markedly with increasing porosity. A fracture mechanics based model is presented to rationalize the increase in fracture toughness of the voided polymer film and explain the behavior in terms of the pore size and volume fraction. It is shown that a certain dependence of pore size and volume fraction is required to increase rather than decrease the fracture resistance. The research has implications for the optimum void size and volume fraction needed to enhance the fracture resistance of porous ductile polymer films.


Sign in / Sign up

Export Citation Format

Share Document