scholarly journals The study of heat transfer performance for a periodic moving condenser. (Liquid film movement on a vertical smooth tube).

1988 ◽  
Vol 54 (503) ◽  
pp. 1785-1790
Author(s):  
Katsuo NISHIYAMA
2020 ◽  
Vol 207 ◽  
pp. 01009
Author(s):  
Thanh Nhan Phan ◽  
Van Hung Tran ◽  
Nikola Kaloyanov ◽  
Momchil Vassilev

This study analyses the performance of heat transfer process which occurs in the convective boiling of Hydro fluoro Olefin (HFO) refrigerant, R1234yf, in horizontal tube. Heat transfer and pressure drop of R1234yf are analyzed and computed at the same working conditions on the same size of outer diameter of tube do = 9.52 mm with difference of inner surface, one is a smooth surface and microfin for other. The flow pattern maps were built at 5°C saturation temperature with 8.62 kW/m2 of heat flux, it is presented that flow pattern of helix flow occurs at very low mass flux and low quality, while at that condition on smooth tube the flow is still stratified wavy flow. The comparison of heat transfer performance between microfin and smooth tube would be evaluated on enhancement factor E, penalty factor P and efficiency index I. With the mass flux on the range G = 111 -- 333 kg/m2s for 5°C boiling temperature, the results show that, average value of E is 2.18; 1.45 of P and 1.54 of I. One more impressing thing is that, at the quality “x” larger than 0.8, the dryout phenomenon takes place on smooth tubes while microfin tubes do not have this phenomenon.


2011 ◽  
Vol 130-134 ◽  
pp. 1306-1309
Author(s):  
Jun Lan Yang ◽  
Yi Tai Ma ◽  
Min Xia Li

s: The obvious characteristics of transcritical CO2 cycle are that the heat rejection process takes place in the supercritical region (about 8-12Mpa). The heat transfer features of CO2 under supercritical pressure are different from those of the conventional refrigerants. And the heat transfer performances comparison study for supercritical CO2 fluid and the conventional refrigerants are carried out by means of thermo-physical properties analog analysis and experimental results quantitative comparison. The special properties variation of supercritical CO2 fluid makes its heat transfer performance different from the conventional fluids. From the view of properties analysis and quantitative comparison, the heat transfer performance of supercritical CO2 is equivalent to the condensation heat transfer of conventional refrigerants. Although the condensation coefficient is very large since there is phase change and latent heat variation in the condensation process, there is liquid film thermal resistance. While in the supercritical CO2 cooling process, there is no liquid film in existence and the thickness of the boundary layer is very thin. The heat transfer temperature difference is very large, so the heat transfer performance in the supercritical CO2 cooling process is equivalent to that of the condensation heat transfer.


Author(s):  
Xu Chen ◽  
Xiaoqiang Hong ◽  
Wei Li ◽  
David J. Kukulka

An experimental investigation of R410A condensation outside a horizontal smooth tube, a herringbone tube and a newly developed enhanced surface EHT tube has been conducted. The herringbone tube has a fin root diameter of 11.43 mm, a helical angle of 21.3 °, 48 fins with a fin height of 0.262 mm and an apex angle of 36 °, the EHT tube has an outer diameter of 11.5 mm with special structure, while the smooth tube has an outer diameter of 11.43 mm. Experiments were taken at a constant saturation temperature of 45 °C, a constant inlet vapor quality of 0.8 and a constant outlet vapor quality of 0.1; mass flux ranging from 5 kg/(m2.s) to 250 kg/(m2.s). Those tubes have different heat transfer performance at different mass flux. The EHT tube has the least heat transfer coefficient than the other two tubes at a low mass flux, while at a high mass flux, the enhanced tubes have a better heat transfer performance than the smooth tube. Heat transfer performance combined with pressure drop measurements reveal that the herringbone tube generally has a better heat transfer performance than the EHT tube, pointing out the herringbone is a wise choice for shell side condensation instead of the EHT tube. Characteristic analysis is made to account for various phenomena in this series of experiments.


2021 ◽  
pp. 206-206
Author(s):  
Zhiqun Zheng ◽  
Fayi Yan ◽  
Lei Shi

A numerical calculation model of multihead twisted spiral tube (MTST) was established. In the range of Reynolds number from 5000 to 35000, the influence of different twisted structure on the flow and heat transfer characteristics of the MTST was studied by numerical calculation. Numerical calculation results indicate that the Nusselt number and friction coefficient increase with the increase in the ratio of outside and inside diameter of the cross-section, the increase in the number of twisted nodes, and the increase in the number of twisted spiral tube heads. Under the condition of the same spiral structure and the same hydraulic diameter, the heat transfer performance of the MTST is better than that of the spiral smooth tube. In addition, through artificial neural network (ANN) analysis, the ratio of outside and inside diameter of the cross-section, number of twisted nodes, and the number of twisted spiral tube heads were optimized to promote the comprehensive heat transfer performance. The performance evaluation criterion is the highest when the ratio of outside and inside diameter of the cross-section is 25/22.5, the number of twisted nodes is 3, and the number of twisted spiral tube heads is 3, which is 1.849 of the spiral smooth tube.


Author(s):  
Farzad Houshmand ◽  
Yoav Peles ◽  
Michael Amitay

A liquid film has been introduced upstream of a heater in a microchannel with gas flow, and the impact on the heat transfer performance has been investigated. The shear force exerted by the gas flow on the gas-liquid interface drives the film and drags it downstream, onto the heated area. Distilled water was injected through a 350 μm circular hole in a main stream of Nitrogen in a 220 μm deep and 1.5 mm wide rectangular microchannel to enhance the heat transfer from a 1 mm × 1 mm heater. Average heat transfer coefficient was studied for different gas and liquid flow rates and compared with single-phase flow. Significant improvement in heat transfer performance was observed while the pressure drop in the channel was not increased dramatically.


2018 ◽  
Vol 240 ◽  
pp. 01038
Author(s):  
Chen Yang ◽  
Min-rui Chen ◽  
Jin-yuan Qian ◽  
Zan Wu ◽  
Zhi-jiang Jin ◽  
...  

Corrugated tubes are widely used in a range of applications for heat transfer enhancement. The spirally corrugated tube has a better heat transfer performance than the smooth tube. In this paper, the heat transfer performance of a hybrid smooth and six-start spirally corrugated tube is studied. With a validated numerical model, the effects of the corrugation part length on the vortex in the downstream smooth tube are studied for a range of high Reynolds numbers, where the existence of the corrugation part can turn out the secondary flow and enhance heat transfer. Meanwhile, it is found that in the smooth part, the fluid flow part with whirling can reach a maximum length, even if the length of the corrugation part continuously increases. Thus a series of critical corrugation lengths can be obtained. This work can reveal the enhanced heat transfer mechanism of the hybrid smooth and spirally corrugated tube and be of interest to researchers in heat transfer issues of corrugated tubes.


Sign in / Sign up

Export Citation Format

Share Document