scholarly journals A study on stabilization of operation time for hydraulic operating circuit breaker (Investigation of synchronous / sequential operation system of two high speed hydraulic operating devices)

2016 ◽  
Vol 82 (838) ◽  
pp. 15-00539-15-00539 ◽  
Author(s):  
Tohru YAMASHITA ◽  
Yoshiki HIRANO ◽  
Nobuya NAKAJIMA ◽  
Tsutomu SUGIYAMA ◽  
Toshiaki YOSHIZUMI
2018 ◽  
Vol 232 ◽  
pp. 04010
Author(s):  
Saifei Liu ◽  
Xiaochun Ma ◽  
Ruizheng Ni

In view of the large volume, complex structure and many transmission links of the current circuit breaker operating mechanism, a new type of electromagnetic actuator and electronic controller are used to shorten the operation time. This paper introduces the hardware and software design of an intelligent fast switching controller based on CPLD. The hardware circuit design of the controller is mainly described, including power supply conversion and charging voltage monitoring, switch state monitoring, control command monitoring, relay output, LED indicator and split switch driving module. The optocoupler isolation is realized between input and output, and the thyristor module is used to drive the capacitor discharge. The feasibility of the design circuit is verified by the actual sampling waveform, which has the advantages of high-speed operation, intelligent control, high technical performance and reliable operation.


2021 ◽  
Vol 11 (11) ◽  
pp. 4756
Author(s):  
Gaoran Guo ◽  
Xuhao Cui ◽  
Bowen Du

High-speed railways (HSRs) are established all over the world owing to their advantages of high speed, ride comfort, and low vibration and noise. A ballastless track slab is a crucial part of the HSR, and its working condition directly affects the safe operation of the train. With increasing train operation time, track slabs suffer from various defects such as track slab warping and arching as well as interlayer disengagement defect. These defects will eventually lead to the deformation of track slabs and thus jeopardize safe train operation. Therefore, it is important to monitor the condition of ballastless track slabs and identify their defects. This paper proposes a method for monitoring track slab deformation using fiber optic sensing technology and an intelligent method for identifying track slab deformation using the random-forest model. The results show that track-side monitoring can effectively capture the vibration signals caused by train vibration, track slab deformation, noise, and environmental vibration. The proposed intelligent algorithm can identify track slab deformation effectively, and the recognition rate can reach 96.09%. This paper provides new methods for track slab deformation monitoring and intelligent identification.


2014 ◽  
Vol 687-691 ◽  
pp. 934-937
Author(s):  
Shu Tao Zhao ◽  
Yu Tao Xu ◽  
Zhi Wan Cheng ◽  
Jian Feng Ren ◽  
Dan Jiang

Aim at the disadvantages of traditional circuit breaker mechanical characteristic parameters test. Get the motion pictures of insulation connecting rod through high-speed camera, using the finite difference method to quickly screen out the motion pictures, and selecting punctuation area as a template for learning, using non-uniform sampling have a template matching, obtain the center coordinates of matching results, time interval is known every frame. Through coordinate changes over time we can obtain mechanical parameters of the circuit breaker accurately, fast, conveniently. Lab VIEW programs achieve the above process automatically.


2017 ◽  
Vol 4 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Y. Guo ◽  
H. Zhang ◽  
Y. Yao ◽  
Q. Zhang ◽  
J. D. Yan

A high voltage gas blast circuit breaker relies on the high speed gas flow in a nozzle to remove the energy due to Ohmic heating at high current and to provide strong arc cooling during the current zero period to interrupt a fault current. The physical mechanisms that are responsible for the hugely different arc cooling capabilities of two gases (SF<sub>6</sub> and air) are studied in the present work and important gas material properties controlling the cooling strength identified.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Jian J. Zhang ◽  
Jonathan Rutherford ◽  
Metasebya Solomon ◽  
Brian Cheng ◽  
Jason R. Xuan ◽  
...  

Objectives.Although laser lithotripsy is now the preferred treatment option for urolithiasis due to shorter operation time and a better stone-free rate, the optimal laser settings for URS (ureteroscopic lithotripsy) for less operation time remain unclear. The aim of this study was to look for quantitative responses of calculus ablation and retropulsion by performing operator-independent experiments to determine the best fit versus the pulse energy, pulse width, and the number of pulses.Methods.A lab-built Ho:YAG laser was used as the laser pulse source, with a pulse energy from 0.2 J up to 3.0 J and a pulse width of 150 μs up to 1000 μs. The retropulsion was monitored using a high-speed camera, and the laser-induced craters were evaluated with a 3-D digital microscope. The best fit to the experimental data is done by a design of experiment software.Results.The numerical formulas for the response surfaces of ablation speed and retropulsion amplitude are generated.Conclusions.The longer the pulse, the less the ablation or retropulsion, while the longer pulse makes the ablation decrease faster than the retropulsion. The best quadratic fit of the response surface for the volume of ablation varied nonlinearly with pulse duration and pulse number.


2020 ◽  
Vol 10 (22) ◽  
pp. 7958
Author(s):  
Nikhil Murthy ◽  
Amarendra K. Rai ◽  
Stephen Berkebile

In this study, nano-graphene platelets (NG) and a phosphonium-phosphate-based ionic liquid (IL) were studied as additives to rotorcraft gearbox oil to improve the resistance to scuffing under starved lubricated conditions. Behavior under a loss of lubrication was evaluated using a high-speed ball-on-disk tribometer and a reciprocating cylindrical pin-on-disk tribometer. In addition, the scuffing load and friction over a wide range of sliding and entrainment speeds was determined. On the high-speed ball-on-disk tribometer, an oil blend containing both NG and IL additives was able to operate two times longer than an unadditivized oil before scuffing after the lubrication supply was removed. The increase in time to scuffing was larger for two additives together than the sum of their parts. The additives showed an increase in scuffing load individually but were detrimental when mixed together with a lower scuffing load. The combination of NG and IL show promise as additives to increase the operation time of gears during loss of lubrication, however at the potential cost of decreasing the load-carrying capacity of the oil.


Sign in / Sign up

Export Citation Format

Share Document