scholarly journals Metamaterial Inspired Gain Enhanced Elliptical Curved CPW fed Multiband Antenna for Medical and Wireless Communication Applications

2019 ◽  
Vol 12 (2) ◽  
pp. 729-737
Author(s):  
M. Purna Kishore ◽  
B. T. P. Madhav ◽  
S. S. Mohan Reddy

This article presents a novel elliptical curved coplanar waveguide fed antenna with defected ground. Electromagnetic coupling between splitring resonator (SRR) on other side to the substrate to CPW feeding line on the top side resulting the frequency notches in the wideband. The SRR shaped etched portion in the ground plane not only miniaturizing the antenna, but also providing good bandwidth in the operating bands. Antenna providing multiband characteristics for PCS, Bluetooth, LTE, ISM (Medical Application Band) and Wi-Fi communication (2-3.6 GHz), WLAN IEEE 802.11a/h/j/n (4.5-5.825 GHz), satellite system X-band downlink (7.5-9 GHz) and satellite communication applications at (12-16 GHz) & (17.5-18.5 GHz) respectively. This antenna offering quad band notching with penta band operation from 2-20 GHz. The size of the antenna is 40X44X1.6 mm with peak gain value of 7.18 dB with average efficiency parameter more than 68%. The manufactured antenna prototype is tested for validation and the obtained measurement matching with respect to the optimized simulation result.

2019 ◽  
Vol 29 (02) ◽  
pp. 2050032
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Divitha Seetharamdoo ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

A novel compact coplanar waveguide (CPW)-fed planar monopole antenna with triple-band operation is presented for simultaneously satisfying the LTE 2600, WiMAX, WLAN and X-band applications. It is printed on a single-layered FR4 substrate. In this paper, the proposed antenna, which occupies a small volume of [Formula: see text][Formula: see text]mm3 including the ground plane, is simply composed of a CPW-fed monopole with U-, L- and T-shaped slots. By carefully selecting the lengths and positions of both L-shaped and U-shaped slots, a good dual notched band characteristic at center-rejected frequencies of 3.10[Formula: see text]GHz and 4.50[Formula: see text]GHz can be achieved, respectively. The T-shaped slot is etched on the radiating element to excite a resonant frequency in the 7[Formula: see text]GHz band. Then, to prove the validation of the typical design, a prototype model is fabricated and measured. The experimental result shows that the three frequency bands of 2.31–2.80[Formula: see text]GHz (490[Formula: see text]MHz), 3.37–3.84[Formula: see text]GHz (470[Formula: see text]MHz) and 5.04–7.94[Formula: see text]GHz (2900[Formula: see text]MHz) can successfully cover the desired bandwidths of LTE2600/WiMAX (3.50/5.50[Formula: see text]GHz)/WLAN (5.20/5.80[Formula: see text]GHz) and the X-band communication systems (7.1-GHz operation). The principal applications of the X-band are radar, aircraft, spacecraft and mobile or satellite communication system. Nearly omnidirectional and bidirectional radiation patterns of the triband antenna are observed in both H- and E-planes, respectively. In addition, a reasonable gain over the operating bands has been obtained. Indeed, the good agreements between simulation and measurement results have validated the proposed structure, confirming its potential for multiband wireless communication services.


A circular monopole antenna with coplanar waveguide feeding is designed for wideband applications. Different electromagnetic bandgap structures are placed beneath the antenna ground plane to improve the gain and the radiation efficiency. The depicted model occupies the dimension of 50X50X1.60 mm on FR4 substrate with dielectric constant of 4.3. Aerial operating in the dual band of 1.5-3.6 GHz (GPS, LTE, Bluetooth and Wi-Fi applications) and 4.8-15 GHz (WLAN, X-Band and Satellite communication applications) with bandwidth of 2.10 and 10.20 GHz respectively. The final novel antenna design provides good correlation with simulation results.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1204 ◽  
Author(s):  
Sachin Kumar ◽  
Gwan Hui Lee ◽  
Dong Hwi Kim ◽  
Nashuha Syifa Haunan ◽  
Hyun Chul Choi ◽  
...  

A compact-sized planar super-wideband (SWB) monopole antenna with four notched bands is presented in this paper. The antenna consists of a rectangular ground plane and a circular radiator that is fed by a tapered microstrip feed line. The overall size of the antenna is 18 mm × 12 mm × 0.5 mm, and its impedance bandwidth (S11 ≤ −10 dB) ranges from 2.5 GHz to 40 GHz (bandwidth ratio of 16:1). Four notched bands are obtained using two inverted U-shaped slots, a split-ring resonator (SRR), and a meandered slot. The notched frequency bands can be adjustable by changing the parameters of parasitic slot elements, and the realized notched bands in this paper are Wi-MAX band (3.5 GHz), WLAN band (5.5 GHz), satellite communication X-band (7.5 GHz), and amateur radio band (10.5 GHz). The simulated and experimental results show good agreement with each other. The antenna possesses a high gain, super-wide impedance bandwidth, and omni-directional radiation patterns.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 624 ◽  
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Fadwa Alrowais

A compact, low-profile, coplanar waveguide (CPW)-fed quad-port multiple-input–multiple-output (MIMO)/diversity antenna with triple band-notched (Wi-MAX, WLAN, and X-band) characteristics is proposed for super-wideband (SWB) applications. The proposed design contains four similar truncated–semi-elliptical–self-complementary (TSESC) radiating patches, which are excited through tapered CPW feed lines. A complementary slot matching the radiating patch is introduced in the ground plane of the truncated semi-elliptical antenna element to obtain SWB. The designed MIMO/diversity antenna displays a bandwidth ratio of 31:1 and impedance bandwidth (|S11| ≤ − 10 dB) of 1.3–40 GHz. In addition, a complementary split-ring resonator (CSRR) is implanted in the resonating patch to eliminate WLAN (5.5 GHz) and X-band (8.5 GHz) signals from SWB. Further, an L-shaped slit is used to remove Wi-MAX (3.5 GHz) band interferences. The MIMO antenna prototype is fabricated, and a good agreement is achieved between the simulated and experimental outcomes.


Author(s):  
Mohammad Alibakhshi-Kenari

In this article, a new construction of a small planar dual-band fed printed monopole antenna based on coplanar waveguide is suggested. Impedance matching for dual-band operations is obtained by embedding three vertical strips with different sizes in the U-shaped conductor-backed plane. The main problem of the designed antenna is the measuring of the specifications with the Agilent 8722ES Vector Network Analyzer, when the coaxial cable is connected to the antenna. Hence, in this paper a new method for decoupling the cable from the antenna is presented. This method is based on using the ferrite bead. The ferrite bead reduces the cable radiation, so that its position plays the important part in the antenna radiation characteristics. The fabricated antenna includes the benefits of the miniaturized size and dual-band operating specifications, so that the mentioned properties have been achieved without modifying the coplanar-waveguide-ground surface or radiator patch. The antenna has the small size of 15 × 15 × 0.8 mm3and bandwidths with S11 < −10 dB about 2.2 GHz (5.05–7.25 GHz) for WLAN-band or IEEE 802.11a-band and 5.2GHz (7.6–12.8 GHz) for X-band, which correspond to 36 and 51% practical bandwidths, respectively. The antenna measured peak gains are about 1.8 dBi at WLAN-band and 4.3 dBi at X-band.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
K. Kumar ◽  
N. Gunasekaran

A simple and a compact coplanar waveguide (CPW) ultrawide band (UWB) antenna is presented. Multiband stop function is achieved by two different types of band stop resonators. One is a tilted square spiral slot resonator of different size and length etched on the patch and the other is a coupled resonator etched on the ground plane. These resonators provide considerable increase in notch bandwidth at the stop bands. The proposed antenna has a total size of18×20.3 mm2. The designed antenna achieves pass band performance at 1.8–2.1 GHz (15.38%), 3.0–3.2 GHz (6.45%), 4.4–4.7 GHz (6.59%), 6.3-6.4 GHz (1.57%), and 8–11.2 GHz (33.33%) where VSWR <2 and four stop bands at 2.4–2.8 GHz (15.38%), 3.2–3.7 GHz (14.49%), 5.5–6 GHz (8.69%), and 6.5–7 GHz (7.40%) where VSWR is equal to 10. The antenna has a peak gain of 3.8 dBi. The measured results show that the antenna achieves good impedance matching and consistent radiation patterns over an operating bandwidth.


2017 ◽  
Vol 6 (4) ◽  
pp. 36-41 ◽  
Author(s):  
H. S. Mewara ◽  
D. Jhanwar ◽  
M. M. Sharma ◽  
J. K. Deegwal

A novel hammer-shaped UWB printed antenna with triple notched stop bands is presented and fabricated on FR-4 substrate with size of 40×40×1.6 mm3. The proposed antenna is composed of hammer-shaped patch with C-shaped slot, U-shaped slot on feed line, and inverted stepped notch and bevel edges with pair of L-shaped slots in partial ground plane. The fabricated antenna is tested and obtained impedance bandwidth 2.89 ̶ 11.6 GHz with three notched stop bands 3.15 ̶ 3.7 GHz, 5.45 ̶ 6.8 GHz, and 7.5 ̶  8.8 GHz, for radiolocation system (RLS), wireless local area networks (WLAN), and X-band satellite communication system (XSCS) bands, respectively. Moreover, the antenna result shows omnidirectional radiation pattern, average gain of 3.10 dBi over the whole UWB band except at the notched frequency bands.


Author(s):  
Mohssine El Ouahabi ◽  
Aziz Dkiouak ◽  
Alia Zakriti ◽  
Mohamed Essaaidi ◽  
Hanae Elftouh

<span lang="EN-US">A compact design of ultra-wideband (UWB) antenna with dual band-notched characteristics based on split-ring resonators (SRR) are investigated in this paper. The wider impedance bandwidth (from 2.73 to 11.34 GHz) is obtained by using two symmetrical slits in the radiating patch and another slit in the partial ground plane. The dual band-notch rejection at WLAN and X-band downlink satellite communication system are obtained by inserting a modified U-strip on the radiating patch at 5.5 GHz and embedding a pair of rectangular SRRs on both sides of the microstrip feed line at 7.5 GHz, respectively. The proposed antenna is simulated and tested using CST MWS high frequency simulator and exhibits the advantages of compact size, simple design and each notched frequency band can be controlled independently by using the SRR geometrical parameters. Therefore, the parametric study is carried out to understand the mutual coupling between the dual band-notched elements. To validate simulation results of our design, a prototype is fabricated and good agreement is achieved between measurement and simulation. Furthermore, a radiation patterns, satisfactory gain, current distribution and VSWR result at the notched frequencies make the proposed antenna a suitable candidate for practical UWB applications.</span>


2017 ◽  
Vol 6 (2) ◽  
pp. 53 ◽  
Author(s):  
E. K. I. Hamad ◽  
N. Mahmoud

Compact microstrip-fed printed monopole antenna with triple band-notched characteristics is suggested for ultra-wideband (UWB) applications. The antenna is constructed of a conventional rectangular microstrip patch antenna with partial ground plane and T-shaped strip employed in the ground plane as well as an inverted Ω- and L-shaped slots incorporated within the radiated element. The notched functions are created by the inverted Ω- and L-shaped slots, which are realized for WiMAX (from 2.69 to 4.5 GHz) and WLAN (from 5.49 to 6.37 GHz). The T-shaped parasitic strip generates the third notch for the X-band uplink satellite communication (from 8.15 to 9.61 GHz). The measured operating -10 dB bandwidth of the proposed antenna extends from 2.39 to more than 18 GHz except at the notched bands. The prototype antenna has a total area of 20×20×1.6 mm3. Electromagnetic (EM) simulations are carried out using 3D full-wave FEM-based simulator. EM simulation results are in good agreement with measurement results. The radiation pattern of the proposed antenna is nearly Omni-directional over the whole targeted band.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chandan Kumar Ghosh ◽  
Arabinda Roy ◽  
Susanta Kumar Parui

Elevated-coplanar-waveguide- (ECPW-) fed microstrip antenna with inverted “G” slots in the back conductor is presented. It is modeled and analyzed for the application of multiple frequency bands. The changes in radiation and the transmission characteristics are investigated by the introduction of the slots in two different positions at the ground plane (back conductor). The proposed antenna without slots exhibits a stop band from 2.55 GHz to 4.25 GHz while introducing two slots on the back conductor, two adjacent poles appear at central frequencies of 3.0 GHz and 3.9 GHz, respectively, and the antenna shows the ultra-wideband (UWB) characteristics. The first pole appears at the central frequency of 3.0 GHz and covers the band width of 950 MHz, and the second pole exists at a central frequency of 3.90 GHz covering a bandwidth of 750 MHz. Experimental result shows that impedance bandwidth of 129% (S11<-10 dB) is well achieved when the antenna is excited with both slots. Compared to most of the previously reported ECPW structures, the impedance bandwidth of this antenna is increased and also the size of the antenna becomes smaller and more suitable for many wireless applications like PCS (1850–1990 MHz), WLAN (2.4–2.484 GHz), WiMAX (2.5–2.69 GHz and 5.15–5.85 GHz), and also X-band communication.


Sign in / Sign up

Export Citation Format

Share Document